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Effective Shadow Removal via Multi-scale Image
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Abstract Shadow removal is a fundamental and chal-

lenging problem in image processing field. Current ap-

proaches can only process shadows with simple scenes.

For complex texture and illumination, the performance

is less impressive. In this paper, we propose a novel

shadow removal algorithm based on multi-scale image
decomposition, which can recover the illumination for
complex shadows with inconsistent illumination and d-
ifferent surface materials. Independent of shadow de-

tection, our algorithm only requires a rough boundary

distinguishing shadow regions from non-shadow region-

s. It first performs a multi-scale decomposition for the

input image based on an illumination-sensitive smooth-
ing process and then removes shadows in the basic lay-
er using a local-to-global optimization strategy, which

fuses all local shadow-free results in a global manner.

Finally, we recover the texture details for the shadow-

free basic layer and obtain the final shadow-free image.

We validate the performance of the proposed method

under various lighting and texture conditions and show

consistent illumination between shadow and surround-

ing regions in the shadow removal results.
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1 Introduction

Shadow is ubiquitous in our daily life. However, its low

brightness in shadow regions always gives rise to in-

terference for vision tasks, such as object recognition,

image retrieval and target tracking. Shadow removal is

thus a fundamental topic in computer vision and image

processing communities, especially for complex shad-

ows. While there have been many works in this field
[7,9,10,12,27,32,35], most of them are aimed at pro-
cessing hard shadows under simple reality conditions.
Rare methods can actually handle shadows with incon-

sistent illumination and different surface materials.

In order to achieve desired shadow-free images, it
involves three main challenges. First, complex shadows

are usually hard to be detected accurately, for example,

the soft shadow with unconspicuous shadow boundary.

Second, it is difficult to obtain successful shadow re-

moval results when the illumination in shadow regions

is non-uniform, especially in shadow boundaries. Third,

the rapid illumination change in shadow regions is easy

to cause color distortion or detail loss (artifacts) in the

shadow removal result.

One typical group of traditional shadow removal

methods are to recover the illumination in shadow re-

gions using illumination transfer [21,28,33–35], which

borrow the illumination from non-shadow regions to

shadow regions. The recovered illumination may be d-

ifferent according to different non-shadow sampling re-

gions. Another typical group of shadow removal ap-

proaches remove shadows based on gradient domain

manipulation [7,15,17]. A common idea in these tech-
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niques is to nullify the gradient on shadow boundaries

and reconstruct the shadow-free result utilizing the gra-

dient information on shadow regions. But the invalid

gradient will lead to texture loss on shadow bound-

aries. Moreover, there may be error propagation in the

process of illumination reconstruction, which produces

shadow removal result with color distortion.

More recently, deep neural network is introduced for

shadow removal [11,19,25]. This technology is very ef-

fective when there is a large number dataset with differ-

ent shadow and shadow-free image pairs. In order to ac-
tivate this technique, it requires that the dataset should
contain a full range of shadow types and a wide vari-
ety of surface materials in shadow regions. But current

publicly available shadow datasets are relatively small,

as shown in Table 1. The limited amount of training

data could cause unsatisfied artifacts for some shadow

images. Besides, such learning-based methods usually
compress the image resolution before processing, which
is always accompanied by certain quality reduction for
the shadow removal result.

To overcome the limitations of aforementioned meth-

ods, we present a novel shadow removal algorithm which
can recover illumination for complex shadow images. D-

ifferent from the most existing shadow removal method-

s, our approach needs not to detect the accurate shad-

ow regions. We distinguish the shadow and non-shadow

regions using a rough shadow mask provided by users.
To remove the shadow, we first perform a multi-scale
image decomposition for the shadow image based on
illumination-sensitive smoothing method. Then, we re-

move shadows in the basic layer through local-to-global

optimization strategy and produce the final shadow-

free result by reintegrating the detail information into

the shadow-free basic layer. Since the rapid illumina-
tion change may cause texture detail loss which leads
to distortion in the shadow removal result, to acquire
high-quality outputs, we refine the details within these

distortion regions via texture detail synthesis. Figure

1 shows the overview of the proposed shadow removal

algorithm.

The main contributions and advantages of the pro-

posed method are two aspects:

– Introduce a novel shadow removal method using the

local-to-global optimization strategy, which not only

works well in shadow image with different materi-

als but also can handle shadows with inconsistent

illumination.

– Develop an illumination-sensitive smoothing method

for shadow images, which can extract the texture

details with less or no illumination information.

2 Related work

Several shadow removal methods are proposed based

on gradient domain manipulation [5–7]. Finlayson et al.

[7] removed the shadows by performing gradient opera-

tions for non-shadow regions. This method depends on

accurate shadow edges detection and may not produce

satisfactory results due to the inaccurate shadow edges
detection. Mohan et al. [17] removed shadows using gra-
dient domain manipulation. This method requires much

user interaction to specify the shadow boundary. Liu et

al. [15] removed shadow by solving a Poisson equation,

which constructed a shadow-free and texture-consistent

gradient field between the shadow and lit area.

Shadow matting is also exploited in shadow detec-
tion and removal [13,14]. Chuang et al. [16] proposed a

method for shadow extracting and editing which con-

sidered the input image as a linear combination of a

shadow-free image and a shadow matte image. Wu et

al. [26,27] supposed shadow effect as a light attenuation

problem. Methods [26] and [27] applied user-supplied

hints to identify shadow and non-shadow regions. Al-

though these two methods tried to preserve the texture
appearance under the extracted shadow, they still do
not effectively recover the image detail in the shadow
areas. Gryka et al. [9] removed soft shadows applying a

data-driven method. They estimated the shadow mat-

tes by learning a regression function from the shad-

owed image regions and their shadow mattes. But this

method is limited by the training set. Xiao et al. [30]
applied depth information provided by the depth sensor
to remove shadows in RGB-D images.

Several shadow removal methods are proposed based
on illumination or color transferring. Inspired by the

color transfer theory [20], Shor et al. [21] performed

pyramid-based restoration process to remove shadows

in the image. This method requires that the shadow

regions and the sample region share similar texture to

produce satisfied results. Moreover, this method can on-
ly handle the shadow regions with uniform texture and
illumination. By improving [21], Xiao et al. [28] recov-

ered the illumination under the shadow regions using

adaptive multi-scale illumination transfer. Later, Xiao

et al. [29] completed shadow removal by performing il-

lumination transfer from the non-shadow regions to the

matched shadow regions. But this method may fail to

ensure smooth transition between sub-regions. Guo et

al. [10] presented a method to detect as well as remov-

ing shadows based on paired regions. Zhang et al. [35]

removed the shadows in image by using a coarse-to-

fine illumination optimization strategy. Due to the size

limitation of local patches, this method is difficult to
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Fig. 1 The overview of the proposed shadow removal method. We remove shadows in the basic layer (g) using the local-to-
global strategy (d-i) and obtain the final shadow removal result after detail recovering.

provide satisfying results for complicated shadows and

shadows with large illumination variances.

Recently, deep learning networks have been applied

to the task of shadow detection and removal [11,12,19,

25]. Khan et al. [12] used multiple convolutional neu-

ral networks to learn useful feature representations for

shadow detection. With the shadow detection results,

integrating multi-level color transfer they further pro-
posed Bayesian formulation for the shadow removal. Vi-
cente et al. [23] considered shadow detection as a prob-
lem of labeling image regions and trained a kernel least-

squares support vector machine for labeling shadow re-

gions. Qu et al. [19] proposed an end-to-end Deshad-

owNet to recover illumination in shadow regions. These

methods may create visible artifacts in the shadow re-
gions if the shadow type and surface material are not
well represented in the training database. In particular,

Wang et al. [25] learned shadows from a single image

and proposed a novel STacked Conditional Generative

Adversarial Network (ST-CGAN) to perform the two

tasks of shadow detection and shadow removal. Differ-

ent from the commonly used multi-branch paradigm,

they stacked all the tasks in a perspective for multi-

task learning. Additionally, such deep learning methods

require access to the training database, which greatly

restricts possible application scenarios.

3 Shadow removal

In order to process complex shadow, such as shadows

with inconsistent illumination and different surface ma-

terials, we introduce a local-to-global strategy to per-

form the task of shadow removal. Since smooth image is

piecewise continuous and beneficial to region division,

we first perform multi-scale image decomposition and

then do shadow removal in the basic layer image.

Figure 1 shows the overview of the proposed shadow

removal method. We first decompose the input image

using an illumination-sensitive filtering method to get

a smooth base layer (Fig. 1(c)). Then, we remove shad-

ows in the basic layer using the local-to-global strate-

gy. Specifically, we divide the basic layer into differen-

t regions (Fig. 1(d)) and select the significant regions
in shadow regions (Fig. 1(f)), which have high occur-
rence probability or contain key material and illumina-
tion information in shadow regions. For each significant

region, we find its matched region (Fig. 1(g)) in the di-

vided non-shadow regions (Fig. 1(e)). Next, we remove

shadows separately based on the different match pairs

(Fig. 1(h)). Subsequently, we blend the different shad-
ow removal results and obtain the global shadow-free
result for the basic layer (Fig. 1(i)). Finally, we inte-
grate the details back to the shadow-free basic layer

and obtain the shadow removal results (Fig. 1(j)).
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(a) (b) (c) (d) (e) (f)

Fig. 2 Image segmentation process. (a) is input image. (b) is shadow mask. (c) is the basic layer after multi-scale image
decomposition. (d) is the superpixel segmentation result using SLIC method. The superpixel number is set to 1500 and
compactness is 10. (e) is the clustering result for shadow regions. (f) is the clustering result for non-shadow regions.

Different from most existing shadow removal meth-

ods, we only need a rough shadow mask, covering all

shadows, to distinguish shadow regions from non-shadow

regions, as shown in Fig. 2(b). In the shadow mask, the

black part is the non-shadow region, whereas the white

indicates the shadows.

3.1 Multi-scale image decomposition

Multi-scale image decomposition [3,18,22,31] is to de-

compose an image into one smooth basic layer and sev-

eral detail layers. The basic layer contains the main

color information of the image, while the detail layers

represent the coarse shape information for the image.

Let I be the input image, the multi-scale decomposition
for I can be represented as:

I = b+

N
∑

i=1

Li, (1)

where N is the number of layers, b is the basic layer

image, Li represents detail layer information at the i-
th smoothing operation. The basic layer b is the image

after the N -th smoothing operation on the input image.

Let Si be the smooth result after the i-th smoothing,

Li is defined as:

Li = Si−1 − Si, (2)

where i ∈ {1, 2, · · · , N} and S0 = I.

While there are many filter algorithms, such as Gaus-

sian smoothing and bilateral filtering, they do not take

the illumination variation into consideration, and the

detail layer would exhibit details caused by illumina-

tion changing, such as details from shadow boundaries.

This may lead to severe artifacts in the shadow removal

result, as shown in Fig. 3(b, c). Therefore, to handle

shadows with inconsistent illuminance, we present an

illumination-sensitive smoothing algorithm for image

multi-scale decomposition.

(a) (b) (c) (d)

Fig. 3 Shadow removal results with different smoothing
methods. (a) is the input image. (b) is shadow removal re-
sult using Gaussian filter. (c) is shadow removal result using
bilateral filter. (d) is our shadow removal result using the
proposed smoothing method.

It is notable that while the color, illumination and

tone of one pixel point vary with different light con-

dition, its material keeps the same. Therefore, we find

related points for each point based on the relevance of

the color, illumination and tone between point i and its

neighbor j.

Color relevance The color for two points with the

same illumination and reflectance are similar. So we use

color relevance Dc to identify whether two points have

the similar illumination and material. The formula is:

Dc = exp(−
||Ii − Ij ||

2

2σ2
c

), (3)

where Ii is the intensity at point i in RGB space and

Ij is the intensity at point j. σc is color deviation in its

local region.
Illumination relevance As the light source is ob-

scured, the illumination in shadow region is often lower

than that in non-shadow region. The illumination rele-

vance Dl between two points is defined as:

Dl = exp(−
(Li − Lj)

2

2σ2
l

), (4)

where Li and Lj are the illumination at point i and

j, which are represented by the L channel in Lab color

space. σl is the illumination deviation in its local region.

Tone relevanceGenerally, shadow and non-shadow
regions vary in tone. Thus it can be used as a feature
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to distinguish shadow from non-shadow areas. The tone

relevance Dh is defined as:

Dh = exp(−
(Hi −Hj)

2

2σ2
h

), (5)

where Hi and Hj are the tone value at point i and j,

which are represented by the H channel in HIS color

space. σh is the deviation of tone in its local region.

In our experiments, if the overall relevance value
D = Dc × Dl × Dh is above 0.8 (the value of 0.8 is

determined by lots of experiments, which could produce

good performance for most scenes), we regard point i

and j as the relevant points. If one point has no relevant

point, we regard it as an isolated point and remain its
illumination unchanged; otherwise, we use the average

intensity of all relevant points as the new illumination

for this point.

Let Ri be the set of relevant points at point i. i is

a pixel point in shadow regions. The new illumination

at point i is computed using the relevant point j ∈ Ri:

Ismooth
i =

Σj∈Ri
wijIi

Σj∈Ri
wij

, (6)

where Ii is the intensity at point i. wij is the similarity

between point i and j, and wij = exp(− (Ii−Ij)
2

2σ2 ).

Figure 3(d) is the shadow removal result using the

proposed smoothing methods, which shows that the

proposed illumination-sensitive smoothing method work-

s better in the shadow images. Note that, in the process

of image smoothing, we process the shadow regions and

non-shadow regions separately.

3.2 Shadow removal for the basic layer

Our smoothing method is illumination-sensitive. The

detail layers contain less or no illumination details. There-

fore, the shadow removal task can be transferred from

the input image to the basic layer. On the other hand,

to deal with shadows with inconsistent illumination, we

propose a local-to-global strategy to recover the illumi-

nation in shadow regions for the basic layer.

Local transfer Considering that the illumination in

shadow regions may be different, we first process the

basic layer in local manner, which divide the basic layer

into different regions and remove their shadows respec-

tively. Since the basic layer is a smooth image and a

superpixel is a small part with similar color, we cluster

the basic layer using superpixels instead of pixels. In

our experiment, we use method [1] to perform super-

pixel segmentation. Note that, we process the shadow

and non-shadow regions separately. To increase the ac-

curacy of superpixel clustering, we adopt a small size

for superpixels, as shown in Fig. 2(d). We cluster the

superpixels by comparing the color and illumination in
the superpixels.

Suppose P1 and P2 are two superpixels with feature

vectors (c1, l1) and (c2, l2) respectively. The clustering

similarity between them is:

s = exp(
−(c1 − c2)

2

2σ2
c

) + exp(
−(l1 − l2)

2

2σ2
l

), (7)

where c1, c2 are the corresponding color value and l1,

l2 are the corresponding illumination value. If s < T ,
we consider P1 and P2 locating in the same sub-region

(in our experiments, T is set to 1.2).

After clustering, the superpixels with similar color

and illumination are divided into a common region. The

shadow and non-shadow regions are divided into differ-

ent regions based on different colors and illumination,

as shown in Fig. 2(e, f). Because the number of the di-

vided regions may be large, we extract the significant

regions from the divided shadow regions, as shown in
Fig. 1(f). The significant regions consist of two part-
s: main regions and key regions. The main regions are

those with large size in the divided shadow regions and

have high occurrence probability in the image. The key

regions have low probability but containing key mate-

rial or illumination information.

The selection for significant regions follows the fol-
lowing steps:

(1) Select 5 main regions from the divided regions

which have the largest sizes. If the average intensity

difference between two main regions is lower than 10 in

all three channels, the smaller one will be deleted from

the main regions.

(2) Find several key regions based on surface materi-

al and illumination in shadow regions. If the average in-

tensity difference between current region and the main
regions selected in (1) is larger than 20, we consider it
as the key region.

(3) Label significant regions. If the key regions and
main regions contain a common region, the common
region will be labeled once.

To remove the shadows, we find the matched region

in the divided non-shadow regions for each significant
region using method based on covariance matrix [35]. S-
ince the basic layer has poor texture information, we use

the information of the input image for region matching.
With the matched region pair, we can remove shadows
in the significant region using illumination transfer e-

quation in [21].

Suppose there are N significant regions in shadow

regions, labeled as Sr
color, r ∈ {1, 2, · · · , N}. Using the

method based on covariance matrix [35], we find the

matched region Lr
color for each significant region Sr

color.
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Non-shadow regions

Unknow shadow regions 

Region

X

r
colorS

Fig. 4 Shadow interpolation process.

Sr
avg and σ(S) are the mean value and standard devi-

ation of Sr
color, respectively. The mean value and stan-

dard deviation of Lr
color are labeled as Lr

avg and σ(L).
The intensity at shadow point i in the basic layer is bi.

Br
i is the shadow-free value at point i, which is estimat-

ed as:

Br
i =

σ(L)

σ(S)
(bi − Sr

avg) + Lr
avg. (8)

Equation 8 is used to remove shadows in the corre-

sponding significant regions, but other shadow regions

still need further processing. We suppose that illumi-

nation in shadow regions is constant (the inconsistent

illumination in shadows will be discussed in the follow-
ing), so the gradient information does not change after
shadow removal. Using the idea of Poisson equation in-
terpolation [8], we consider the shadow-free significant

regions as known areas and reconstruct the shadow-free

illumination of other regions using the gradient infor-

mation in shadow regions.

As shown in Fig. 4, X represents the unknown shad-
ow regions which is shadow regions besides significant

region Sr
color. ∂X is the boundary of Sr

color. Let f be the

objective function for the shadow points in X and f∗

be the known function defined over Sr
color. The vector

field V is guidance field, which is the gradient of the

basic layer. The objective function f can be obtained

by solving the following Poisson equation:

min
f

∫∫

X

|∇f − V |2 , f |∂x = f∗|∂x. (9)

For i ∈ X, Ni is the set of its 4-connected neighbors.
Let < i, j > denote point pair and j ∈ Ni. The bound-

ary ∂X can be denoted that ∂X = {i ∈ Sr
color|X :

Ni ∩X 6= ∅}. Then, Eq. 9 can be written as:

min
f |X

∑

<i,j>
⋂

X 6=∅

(fi − fj − vij), fi = f∗
i , i ∈ ∂X. (10)

According to the optimality condition, the solution

for Eq. 10 satisfies the following simultaneous linear
equation:

|Ni|fi −
∑

j∈Ni∩X

fj =
∑

j∈Ni∩∂X

f∗
j +

∑

j∈Ni

vij , (11)

where |Ni| is the number of Ni. vij is the gradient on

oriented edge [i, j] in the basic layer. We use Gauss-

Seidel iterative method to solve this linear equation. In
the iterative optimization process, we use illumination

in Sr
color to estimate the shadow-free values in X.

Global fusionUsing a region pair, we can get a shadow-

free result for the basic layer. The significant region is

local area and the shadow removal result could have

better effect on the local area. But the results may not

be satisfactory in other regions, as shown in Fig. 1(h).

The reason for the unsatisfied results is that the local

transfer part supposes illumination in shadow regions is

consistent, but the illumination is inconsistent in these

regions actually. Given a different region pair, it pro-

duces another different shadow removal result. There-

fore, to get an optimal shadow removing result for the
basic layer, we fuse all the candidate shadow-free results
in a global manner.

Let Br be the candidate shadow-free result corre-

sponding to region Sr
color. The fusion operation at point

i is defined as:

Bi =

∑

r λ
r
i d

r
iB

r
i

∑

r λ
r
i d

r
i

, (12)

where Bi is the intensity at point i after fusion, λr
i and

dri measure the color difference and distance difference

between point i and Sr
color, respectively. B

r
i is the in-

tensity at point i in candidate result Br.

Let Br
avg be the average intensity on Sr

color in Br,

bi is the intensity at point i in the basic layer and Sr
avg

is the average intensity on Sr
color in the basic layer.

The color measurement λr
i between point i and Sr

color

is computed using the following equation:

λr
i = 1−

Br est
i −Br

i

Br
avg

, (13)

where Br est
i =

biB
r
avg

Sr
avg

.

The position measurement dri between point i and

Sr
color is computed as:

dri = 1−

√

(dix − drix)
2 + (diy − driy)

2

D2
x +D2

y

, (14)

where Dx and Dy are the width and height of the in-

put image respectively. (dix, diy) denotes the coordinate

position of point i in the image, (drix, d
r
iy) is the coordi-

nate position of point that is nearest point to i in region

Sr
color. The fusion result (Fig. 1(i)) illustrates the ben-

efit of the local-to-global strategy.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Shadow boundary processing. (a) is the input image. (b) is shadow-free result for the basic layer. (c) is the detail
image, which are magnified 8 times. (d) is the shadow removal result incorporating detail image (c). The purple region in (e)
and (f) are the distortion shadow regions. (g) is the repaired detail image on shadow boundaries. (h) is the corresponding
shadow removal result using the repaired detail image.

(a) (b) (c) (d) (e) (f)

Fig. 6 Detail recovering and enhancement. (a) is the input image. (b) is the basic layer, which is a smooth image. (c) is the
detail image by magnifying 2 times. (d) is the shadow-free result for basic layer. (e) is the shadow removal result with β = 1.
(f) is the detail enhancement result in shadow regions with the estimated β = 2.03.

(a) (b)

Fig. 7 Shadow removal result using our algorithm. (a) is the
input image. (b) is the shadow removal result.

3.3 Detail recovering

Detail recovering includes two stages: detail recovering

for the basic layer and detail recovering for the distor-

tion regions on shadow boundaries.

Detail recovering for the basic layer The shadow

removal result for the basic layer is a smooth image.

We should reconstruct the details of the image. We use

the detail information on the multi-scale decomposition

to recover the detail. Let Ifree be the shadow remov-

ing result with detail recovering, and B be the shadow
removing result for the basic layer. Then the detail re-

covering result can be expressed as:

Ifree = B +

N
∑

i=1

Li. (15)

As low brightness of shadow regions usually weakens
the detail information, to effective recovery the detail

in shadow regions, we add a weight coefficient β in Eq.

15 for detail enhancement, which is that:

Ifree = B + β

N
∑

i=1

Li. (16)
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(a) (b) (c) (d) (e) (f) (g) 

Fig. 8 Shadow removal results for shadows with inconsistent illumination. (a) Input images. (b) Shadow mask used in our
method. (c) Our shadow removal results. (d) Shadow mask used in methods of [10] and [30]. (e) Shadow removal results of
[10]. (f) Shadow removal results of [30]. (e) Close-ups for the color boxes in (c) and (f)

(a) (b) (c) (d) (e) (f)

Fig. 9 Shadow removal comparison results. The first and third row are the shadow removal results. The second and fourth
roware the pixelwise differences between the corresponding shadow removal result and the ground truth. We also present the
average difference values in shadow and nonshadow region separately, which are calculated in the RGB color space. (a) Input
images from SRD dataset [19]. (b) Ground truth. (c) Results of [10]. (d) Results of [35]. (e) Results of [19]. (f) Our results.

Parameter β is controlled by the detail information
between shadow and non-shadow regions, and β = DL

DS
.

DL is the mean value of the detail image in non-shadow
regions and DS is the mean value in shadow regions.

The value of β is different for different image. Figure

6 shows an example of the effectiveness of detail mea-

surement.

Detail recovering for shadow boundaries The rapid
illumination changing on shadow boundaries usually

leads to detail loss (Fig. 5(c)), which results in bright-
ness or color distortion in the shadow removal result
(Fig. 5(d)). So we need to repair the distortion regions.
In the basic layer, there is no distortion in its shadow

removal result, so we only repair details in the distor-

tion regions.
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(a) (b) (c) (d) (e)

Fig. 10 Shadow removal results. (a) Input images from LRSS dataset [9]. (b) Our results. (c) Results of [9]. (d) Results of
[10]. (e) Results of [2].

(a) (b) (c) (d)

Fig. 11 Shadow removal results compared with methods using deep neural network. (a) Input images. (b) Our results. (c)
Results of [25]. (d) Results of [11].

We use the local patch optimization method pro-

posed in [4] to repair the lost details. We first speci-

fy the distortion regions and find a suitable matching

patch from the surrounding regions for each patch in

the distortion regions, as shown the purple regions in

Fig. 5(e). Then we fill details into the distortion region-
s by using details in the matched patch. We use patch

matching method [4] because the patch operations in

this method such as translation, rotation and scaling

effectively increase the accuracy of patch matching. Let

Ti be a patch centered in the input image at point i in
the distortion regions and Ti be the matching patch for

Ti. The details Wi for patch Ti can be expressed as:

Wi = Ti − bi, (17)



10 Ling Zhang et al.

where bi is the patch in the basic layer which has the

same position with Ti. As shown in Fig. 5(f), we use the
details from 8 neighbors of the corresponding point to

fill the distortion detail in Ti. When all points in distor-

tion regions are processed, the lost details in distortion

boundaries would be repaired.

The shadow removing result with boundary process-

ing is more natural, as shown in Fig. 5(f). Note that,

there is rare detail losing and shadow boundary distor-

tion for soft shadows using our method, as shown in

Figs. 6 and 7.

4 Experiments

To illustrate the effectiveness of our approach, we present
various experimental results for shadow removing and
compare with several state-of-the-art shadow removal

methods. Our approach was implemented in C++ on a

computer with Pentium Dual-Core 2.50GHz CPU and

2GB RAM. The parameters σc , σl and σh are set to
50 in our experiments.

In Fig. 7 we present a shadow removal result for

soft shadow image. It can be seen that our approach

gets good result in both umbra and penumbra areas.

The recovered illumination in shadow region is consis-

tent with surrounding environment and the textures in

shadow regions are well retained. Please refer to our

supplementary material for more results.

Experiments with traditional methods Guo et

al. [10] divide the image into many irregular regions

and use the linear mapping model between a matched

pair to remove shadows in the image. Different matched

pairs use a unified linear mapping model, which pro-

duces unnatural shadow-free results for soft shadows,

as shown in Fig. 8(e). Moreover, large regions may con-

tain several different kinds of colors and textures, which

leads to calculation error for the ratio between direct

light and environment light using a unified linear map-

ping model. This calculation error would generate un-
satisfactory shadow-free results, as shown in Fig. 9(c).
The same situation presents in Fig. 10(d). But for sim-
ple shadows with consistent illumination and unique

material in shadow regions, this method can get a good
result, as shown the second row in Fig. 10(d). Compared
with the limitation of simple shadow scene for method

[10], our method can recover the illumination in shadow

regions for shadows with inconsistent illumination and

multiple materials using the proposed local-to-global s-

trategy.

Xiao et al. [30] apply depth information to remove
shadows in a single image. But the inaccurate depth

may cause calculation error in the process for shadow

Table 1 Available shadow related datasets.

Dataset Num. Content of Images Purpose

SRD[19] 3088 shadow and shadow-free shadow removal
UIUC[10] 76 shadow and shadow-free shadow removal
LRSS[9] 37 shadow and shadow-free shadow removal
SBU[24] 4727 shadow and shadow mask shadow detection
UCF[36] 245 shadow and shadow mask shadow detection

ISTD[25] 1870
shadow, shadow mask

and shadow-free
shadow detection

and removal

detection and shadow removal, which will lead to color

and illumination distortion in the shadow removal re-

sults, as shown in Fig. 8(f). Moreover, the overall color

as shown in the second row of Fig. 8(f) is also changed

which is not desirable in the process of shadow removal.

But our method can better keep the original tone in the
shadow-free result not only in non-shadow regions but
also in shadow regions, as shown in Fig. 8(c). Besides,

method [30] needs the accurate shadow detection result,

while our method only need a rough shadow mask, as

shown in Fig. 8(b, d).

Zhang et al. [35] remove the shadows using local
patches, which can deal with some soft shadow. But it is

limited by the size of the patches, which will lead to un-

satisfactory result, especially for shadows with narrow

width, as shown in Fig. 9(d). This method also requires

an accurate shadow detection result. Our method does

not have these restrictions. Moreover, our method can

get more visually consistent results, as shown in Fig.
9(f). Both the illumination and texture of our results
are very close to those of the ground truth images (Fig.

9(b)).

Arbel et al. [2] consider each image channel as an

intensity surface. They fit an intensity surface to the

shadow-free surface and obtain an approximate shadow

removal result. The smooth intensity surface requires

that the shadows are projected into an smooth sur-

face and the surface has uniform material. Otherwise,

there may be some artifacts in the shadow-free result,

as shown in Fig. 10(e). Nevertheless, the local-to-global

strategy used in our method can avoid these problems

and obtain high-quality results, as shown in Fig. 10(b).

Experiments with data-driven methods Re-

cently, there are many shadow removal methods based

on data-driven fashion. These methods share a common

constraint that they depend heavily on the provided

training data. These methods would fail when the test

shadow image is not well represented in the dataset.

Table 1 shows the available shadow datasets. For ex-

ample, Gryka et al. [9] deal with soft shadows by using

a shadow image dataset for soft shadow understanding.

With the limitation of dataset, there may be artifacts

in some shadow removal results, as shown in Fig. 10(c).

Qu et al. [19] remove shadows using an automatic

and end-to-end deep neural network (DeshadowNet).
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The shadow-free result for this method is also limited

by the training sets. Moreover, their training sets are

usually images with simple shadows, for complex shad-

ows, this method may not obtain satisfying shadow-free

results, as shown in Fig. 9(e). Some shadows are not

removed completely. The difference values presented in

Fig. 9 show that our shadow removal results have the s-

mallest differences from ground truth images, compared
with [10,19,35].

Images in Fig. 11 show complex shadow images in

outdoor and indoor scene. Currently, there is rare such
kind of shadow samples in datasets, because the ground
truth is hard to acquire. Thus methods [25,11] do not

produce desirable results for such complex shadows, as

shown in Fig. 11(c, d). Instead, our method can effec-

tively remove shadows in these images and get more

visually natural results, as shown in Fig. 11(b).

Quantitative evaluation To evaluate the perfor-

mance of our method and the related shadow removal

methods, we use the shadow and shadow-free image

pairs in LRSS and SRD dataset for testing. LRSS dataset

contains 37 image pairs. Only a test set of 408 im-

age pairs is publicly available for SRD dataset, so we

use the 408 image pairs for testing. We compute the

root-mean-square error (RMSE) between recovered re-

sult and ground truth in Lab color space as evaluation

metric, which directly measures the pixelwise error be-

tween the two images. Table 2 reports the RMSE values

of different shadow removal methods on LRSS and S-

RD dataset. We compute RMSE values in shadow and
non-shadow regions respectively. The results in Table 2
demonstrate that our shadow removal results have the
smallest differences from ground truth images.

The time consumption of the proposed method de-

pends on the size of the shadow regions and the num-

ber of the selecting feature sub-regions. For example,

the size of the input image in Fig. 5 is 805 × 684. It
takes about 56 seconds for performing multi-scale im-

age decomposition (9 detail levels). We select 5 feature

sub-regions in shadow regions. The process for shadow

removal takes about 105 seconds, including 21 seconds

for feature sub-region matching, 80 seconds for shadow

removing in the basic layer image and 4 seconds for the

detail repairing.

Limitation Our method also suffers from several

limitations. First, the heavy noises may reduce the ac-

curacy of the sub-region matching in the step of shadow

removal, which cause the unnatural shadow removal re-

sult. In addition, if details in shadow regions are lost, it

is difficult for our method to recover detail in the shad-

ow removed results, as shown in Fig. 12. Third, com-

putational cost is currently a computational bottleneck

to our algorithm.

(a) (b) (c) 

Fig. 12 Failure example with detail lost in shadow regions.
(a) is input image. (b) is the detail image, which is magnified
8 times. (c) is the shadow-free result. The second row is the
close-up corresponding to the above image.

5 Conclusion

In this paper we have proposed a method to recov-
er the illumination in shadow regions using a local-
to-global optimization strategy. We first introduce an

illumination-sensitive smoothing method, which works

well on shadow image decomposition. Then we extrac-

t the significant regions in shadow regions and remove

the shadows in the basic layer. By fusing all candidate

shadow removal results, we obtain the global optimal
result for the basic layer. At last, we reconstruct the
details for the shadow-free basic layer image and ob-

tain the final shadow removal result. The experiments

demonstrate the effectiveness of the proposed method

in indoor and outdoor complex environments.

Shadow detection is an important and challenging

problem, especially for large outdoor scenarios with com-

plex soft shadows. Our method distinguishes the shad-

ows from non-shadow regions with rough user inter-

action. In the future, we could extend our framework

to other interesting applications, such as image harmo-

nization and style transfer. In addition, we would facil-

itate the proposed method for real-time video shadow

removal and editing.
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Table 2 RMSE statistics for shadow removal results on LRSS and SRD dataset (smaller is better).

Dataset Original Guo[10] Xiao[29] Gryka[9] Qu[19] Wang[25] Our

LRSS[9]
Shadow 44.45 31.58 14.94 13.67 14.21 13.09 7.77

Nonshadow 4.10 13.89 5.07 8.40 4.17 8.29 4.18

SRD[19]
Shadow 42.38 29.89 12.85 – 11.78 12.51 9.02

Non-shadow 4.56 6.47 5.93 – 4.84 7.33 4.66
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