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Multi-View Stereo
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Abstract In this paper, we explore a new way to ac-

celerate and densify unstructured Multi-View Stereo

(MVS). While many unstructured MVS algorithms have

been proposed, we discover that the image-guided resiz-

ing can easily and significantly benefit their 3D recon-

struction results in both efficiency and completeness.
Therefore, we build our framework upon a novel selec-
tive joint bilateral upsampling and depth propagation
strategy. First we downsample the input unstructured

images into lower resolution ones and perform the MVS

calculation to efficiently obtain depth and normal maps

from these resized pictures. Then the proposed algorith-

m upsamples the normal maps with the guidance of in-
put images, and jointly take them into consideration to
recover the low resolution depth maps into high resolu-
tion with geometry details simultaneously enriched. Fi-

nally by adaptively fusing the reconstructed depth and

normal maps, we construct the final dense 3D scene.

Quantitative results validate the efficiency and effec-

tiveness of the proposed method.

Keywords Multi-View Stereo · unstructured images ·
3D reconstruction · joint bilateral propagation

upsampling

1 Introduction

In the past few decades, Structure-from-Motion [1,16,

22,23,28] for sparse modeling and Multi-View Stereo
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Fig. 1: The proposed selective joint bilateral propaga-

tion strategy can easily and significantly benefit 3D re-

construction results in both efficiency and complete-

ness.

(MVS) [8,10,11,24,39] for dense modeling have made

remarkable progress in image-based modeling field, re-

gardless of accuracy, completeness and robustness.

Image-based modeling offers a low-cost alternative
to laser-based scans [29], and provides easily accessible

reconstruction results benefiting a wide scope of appli-

cations, such as classification [27], image-based render-

ing [5], autonomous vehicles [12], point cloud geome-

try completion [33,36], city-scale modeling and so on.

Different from monocular and binocular stereo, MVS

is able to provide more visually consistent geometries

and alleviated the occlusion problem [11]. While current

MVS methods have shown good results for many real-

ity scenes, they still suffer from high computation and

memory requirements when the number and scale of

images become large. Moreover, MVS relies on finding

feature correspondences with epipolar constraints via

the patch-based stereo strategies. Thus there are defi-
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nitely a large amount of feature correspondences cannot

be found in dealing with high resolution images, which

consequently leads to a less complete reconstructed 3D

models.

In this paper, we propose a novel selective joint bi-

lateral propagation upsampling method for dense un-

structured Multi-View Stereo, which can both benefit

its runtime efficiency and reconstruction completeness.

By downsampling the input high resolution images, we

use a state-of-the-art MVS method (such as COLMAP

[21]) to produce depth and normal maps in low resolu-

tion with higher efficiency. Next we develop a novel joint

bilateral propagation framework to upsample the low

resolution depth and normal maps into high resolution

ones with geometry details simultaneously enriched, as
shown in Figure 1. Finally, we fuse these resized map-
s to get final refined 3D models. We have conducted

extensive experiments on ETH3D benchmark [25] com-

pared with related methods. The results show that our

method can not only greatly reduce the reconstruction

time of the traditional 3D reconstruction methods, but

also get more dense 3D models.

In summary, the main advantages of the proposed

method are as follows:

– Our method is efficient, and can handle high resolu-

tion images for MVS to achieve high performance.
– Our upsampling method can produce more com-

plete dense 3D reconstruction models.

– Our upsampling method is simple and easy to im-

plement, and has the generalization ability to be

applied to many different MVS systems.

This paper is organized as follows, in section 2, we
give the related works. we present the technical detail-

s behind this approach in section 3, and we provide
the experimental results, comparisons and discussions
in section 4. We conclude our paper in section 5, and

also present the future research directions.

2 Related Work

With solid theory foundation [14,31] and advanced com-

putational methods [2,9,32], a series of MVS systems

[6,7,20,21] have been developed. These MVS methods

can be divided into four major categories [26]: voxel-

based methods, surface-based methods, feature-based

methods and depth-based methods. In this paper, we

only review the depth map fusing based methods since

they are most relevant to our work.

These methods compute depth maps for each im-

age firstly and then fuse them together to get dense 3D

point models. [13] presented a MVS algorithm for scene

reconstruction from community photos, which iterative-

ly grew surface to produce depth maps from sparse
points reconstructed from SIFT [18] feature points. Fu-
rukawa and Ponce [10] presented a PatchMatch-based

MVS algorithm named PMVS, which iteratively gen-

erated scene geometry by expansion and filtering steps

from an initial set of oriented patches. The follow-up

work CMVS [8] clustered the scene to multiple indepen-

dent sub-problems, which can be processed by PMVS

individually at the cost of computation time, but can

not handle the effective scale of input images and is not

progressive. [39] presented a MVS algorithm within a

probabilistic framework that jointly modeled pixel-level

view selection and depth estimation, solving by EM-

based view selection probability inference and depth
propagation in a Hidden Markov Chain. [11] presented
a massively parallel MVS algorithm, which iterative-
ly generated depth and normal estimation at the same

time within a slanted support window by a modified,

diffusion-like propagation scheme. [24] presented one

of the state-of-the-art MVS methods, which improved

the work of [39] and developed a robust open software
system. Compared to these prior works, our approach
takes the least time obtaining more dense reconstruc-
tion models by performing reconstruction in the corre-

sponding low resolution images. Recent learning-based

methods [37,38] also show advanced sides to improve

depth and get desired point clouds, whereas their per-

formance relies highly on training data and requires
low-resolution inputs. In contrast, our approach focuses
on a different aspect that explores the capability of 3D

reconstruction via high-resolution image guidance.

Image upsampling is an important operation in com-
puter vision and graphics communities. Naive upsam-

pling method such as bilinear interpolation will suffer

from sharp edge blurring due to the smoothness pri-

or inherent in the linear interpolation filters. Because

of the limitation of this upsampling method, many im-

proved upsampling methods are proposed. Based on the

idea of bilateral filtering [30], joint bilateral upsampling
[17] adopted the image color information and distance
information to upsample the image, and can well pre-

serve the edge characteristics of the image. Different

from our approach, this method use all data in a win-

dow for weighted average interpolation regardless of the

differences among pixels. Bilateral guided upsampling

[4] utilized local information of the image operation k-

ernel to fit a bilateral-space affine model between the

low resolution input image and the low resolution out-

put image, and then produced the high resolution out-

put image by evaluating the model on the high res-

olution input image. Although this method is faster,

their results relying on the interpolation of surround-
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Fig. 2: Algorithm overview. For high resolution input
unstructured images, we perform the following steps to

obtain the final dense 3D scenes: 1 Downsampling, 2

MVS reconstruction, 3 selective joint bilateral propa-

gation upsampling and 4 final depth and normal map

fusion.

ing big size girds are less accurate than ours which not

only uses bilateral weights but also propagates depth

along the tangential planes in 3D space. The fast bi-

lateral solver [3] is an edge-aware fast filter algorithm

using domain-specific optimization in the bilateral s-

pace, which can be used in several different computer

vision tasks. In contrast, our approach avoids solving

optimization problems by selectively interpolating via

jointing source color images and normal vectors infor-

mation.

3 Fast Multi-View Stereo Upsampling

In Figure 2, we present the overview of the proposed
method. We first downsample the input high resolu-

tion unstructured images into low resolution ones, and
perform MVS (such as COLMAP [21]) on these low res-
olution images to obtain the low resolution depth and

normal maps, Then, we develop a novel selective joint

bilateral propagation upsampling method to upsample

the low resolution depth and normal maps into high

resolution ones. Finally, we construct the final dense

3D models by adaptively fusing the depth and normal
maps. In the following subsections, we will provide the
technical details for each step.

3.1 Initial Multi-View Stereo

[24] developed a robust open software system named

COLMAP [21]. The MVS method of their system uti-

lized the probabilistic framework of [39] which jointly

estimates the depth and normal information, performs

pixelwise view selection based on photometric and geo-

metric priors using Generalized Expectancy Maximiza-
tion (GEM) method of variational inference, and fuses
the final dense models after filtering using photometric

and geometric consistency constraints. COLMAP us-

es the GEM method to compute the Normalized Cross

Correlation (NCC) between patches, which requires lot-

s of computation and takes up a lot of time. In addi-

tion, this system needs to store all related image in-

formation in GPU memory, which is intractable when

handling high resolution images. To avoid these prob-

lems, we perform MVS of COLMAP in corresponding

low resolution images instead in the first stage of our

reconstruction.

The MVS method of COLMAP applied photometric
and geometric consistency strategies to filter the depth

and normal maps before producing the 3D dense mod-

el in the final fusion step. In practice, given a correct

depth value at a pixel in one image, sometimes the NC-

C between this image and the corresponding another

image at this pixel is very low due to occlusions or il-

lumination aberration. On the other hand, because of

the repetitive scene structure or homogeneous texture

region [15,35], an incorrect depth value may register

high image similarity in another image, which makes it

not reasonable to use photometric consistency to deter-
mine whether the depth value is accurate. Therefore, to
obtain more accurate depth and normal maps, we need

to denoise them before upsampling.

3.1.1 Depth Map Denoising

The depth and normal maps produced by COLMAP

tend to have heavy-tailed noise distribution, which will

produce heavy outliers when performing direct upsam-

pling. We find that some sparse noise regions in the

depth and normal maps are similar to salt-and-pepper
noise. We use median filtering to denoise the depth
maps, which a depth value will be replaced by the ex-

tracted median depth value if this depth value is suffi-

ciently different from the median depth value (i.e., not

within a factor of [0.95, 1.05] ). Note that, we use a mod-

ified median filtering that pixels without depth values

are not considered when extracting the median depth

value in the window, as the pixels without depth values

are set to zero in the depth maps which will disturb the

median when including them in the computing. Figure

3 shows the depth map filtering result for an image with

size of 400× 300.

3.1.2 Normal Map Denoising

Accurate normal vectors can improve the accuracy and

completeness of the reconstruction results, so it is nec-
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Fig. 3: Filtering the depth maps using median filter.
The left one is the color image, the middle one is the

depth map before median filtering, and the right one is
the depth map after median filtering.

Fig. 4: Filtering the normal maps using median filter.

The left one is the color image, the middle one is the

normal map before median filtering, and the right one

is the normal map after median filtering.

essary to denoise the normal maps as well. There are

many normal filtering methods, such as mean and me-

dian normal filtering [34], bilateral normal filtering [40],

L1-Median filtering [19] and so on. Our goal is simply to
filter some sparse outlier normal vectors, so we use me-
dian normal filtering [34] to denoise the normal maps.
Analogous to the depth map median filtering, we also

exclude the pixels without normal vectors when extract-

ing the median normal vector in the window. Figure 4

shows the denoised result of the normal map using me-

dian normal filtering method.

3.2 Joint Bilateral Propagation Upsampling

After above denoising processing, we can get more ac-

curate low resolution depth and normal maps, the next

step is to upsample the low resolution depth and nor-

mal maps to produce high resolution ones. There are

many upsampling methods, including bilinear interpo-

lation, joint bilateral upsampling [17], bilateral guided

upsampling [4], The fast bilateral solver [3] and so on.

Inspired by the joint bilateral upsampling, we propose

a more effective upsampling method that couples the

image content and normal vectors information to up-

sample the low resolution maps.

Joint bilateral upsampling [17] is an edge-preserving

upsampling method and can produce compelling results

for color images, while using this method to upsample

the depth maps will introduce some troublesome prob-

lems, especially for depth maps containing pixels with-

out depth values. In contrast, we notice that instead of

Fig. 5: Depth propagation on the local 3D tangent

plane represented by a 3D point q′ and its normal nT
q

in camera coordinate.

estimating the depth values of the pixels only depend-

ing on the spatial and range weights, propagating the

depth values of these points on the 3D local tangent

planes will deliver more accurate depth values. Thus,

based on the spatial and range filter kernels, we further

investigate the normal vectors information and intro-

duce a selective joint bilateral propagation upsampling

method.

Given a high resolution original color image Ĩ, low

resolution depth map d and normal map n, the upsam-

pling scheme is defined as follows:

d̃p =



















dp↓
if p↓ is integer

1

W

n
∑

i=1

(Pro(d̃qi → d̃p)f(||p− qi||)g(||Ĩp − Ĩqi ||))

if d̃p = 0,

(1)

ñp =

{

np↓
if p↓is integer

nq1 if d̃p = 0,
(2)

where d̃p and ñp are the estimated depth and normal

values in the high resolution image Ĩ at pixel p. Let p

and q denote coordinates of pixels in Ĩ, p↓ and q↓ de-
note the corresponding coordinates (may be fractional)

in the low resolution image. f is the spatial Gaussian

kernel defining the Euclidean distance between two pix-

els, and g is the range filter kernel defining the pixel

intensity value difference between two pixels. W is a

normalizing factor. Pro(d̃q → d̃p) is the propagation

function we will describe later.

It involves two main steps. First, if p↓ is an integer,

it means that the pixel p corresponds to pixel p↓ ex-

actly. Under this circumstance, instead of interpolation

with surrounding depth and normal values, we assign
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the depth and normal values located at p↓ in low reso-

lution maps to the depth and normal of corresponding
p in the high resolution maps, which will produce more

accurate results. With the first step, we can obtain the

high resolution depth and normal maps with discrete

values. In the second step, we apply a new interpola-

tion method for those pixels without values in the high

resolution depth and normal maps. d̃p = 0 means that
there is no depth and normal values located at p in

high resolution maps. Let Ω represent a window locat-

ed at p, and qi ∈ Ω are neighboring pixels that have

depth and normal values. Different from joint bilateral

upsampling method [17], we perform selective weighted

average interpolation using the most appropriate neigh-

boring pixels. We first sort all qi in descending order

according to bilateral weight f ∗ g, then select n pixels

with largest weights to be considered as the candidate

pixels for the interpolation at p. We do not estimate

depth and normal for p when no pixel having depth
and normal values in its neighborhood Ω. For the depth

map, we use the weighted average of n candidate val-
ues as the depth of p. Because the requirements of the

normal vectors are relatively weak than depth values

in the final fusion step, we just use the normal of the

pixel with the largest weight (named q1) as the normal

of p. That means, compared to the joint bilateral up-
sampling using all pixels in the window for weighted

average interpolation, we only select fewer pixels with
the largest weights for weighted average interpolation,
which will get more accurate values, especially if the
window contains pixels without depth and normal val-

ues or the depth and normal values of the window are

discontinuous.

Pro(d̃q → d̃p) =
d̃qRayqn

T
q

RaypnT
q

(3)

Now we come to define Pro(d̃q → d̃p) shown as

Equation 3. As shown in Figure 5, C is the camera cen-
ter in 3D space. The blue plane is image plane, q is the

neighboring pixel of p that has depth value and normal

vector, its depth value is d̃q, normal vector is nT
q , its

corresponding 3D point is q′. We can define a local 3D

tangent plane at q′ with its normal vector nT
q . Rayq and

Rayp are rays that connecting q and p with the camera

center C, respectively. p′ is the intersection 3D point of
Rayp with the tangent plane of q′. The equation means

propagating the depth value of q (that is d̃q) to p along

the tangent plane defined by the 3D point of q′ and it-

s normal vector nT
q (the green plane of the Figure 5).

For all selected neighboring pixels of p, the propagated

depth values are considered as candidate depth values

for the interpolation at p. We use the propagated depth

value instead of the depth value d̃q in our upsampling

method, as propagating the depth values of adjacent

points along their 3D tangent planes are closer to the

truth depth values of the object, which can produce

more accurate depth maps.

3.3 Depth and Normal Map Fusion

With above denoising and upsampling operation for

low resolution depth and normal maps, we obtain more
complete and accurate high resolution depth and nor-
mal maps. We use the fusion method of COLMAP to
obtain the dense 3D model from the upsampling depth

and normal maps. This fusion method is based on pho-

tometric and geometric constraints from multiple views.

An inlier observation should meet the depth error con-

straint, the normal error constraint and the reprojec-
tion error constraint in the defined directed graph of the
consistent pixels. When there is no remaining node that
satisfies the three constraints in the graph, COLMAP

fuses the cluster’s elements of consistent pixels into a

3D point, which has median location and mean normal

over all cluster elements. Please refer to [24] for more

details.

4 Experiments and Discussions

To demonstrate the effectiveness of our proposed method,

we have conducted extensive experiments on the high

resolution MVS datasets of ETH3D benchmark [25],

which is the latest and one of the most standard 3D

reconstruction datasets including both indoor and out-

door scenes. Our algorithm is implemented in stan-

dard, single-threaded C++, and our experimental en-

vironment is a single PC machine with an Intel(R)

Core(TM) i7-6700k CPU and 16GB RAM. We com-

pare our method with state-of-the art methods both

quantitatively and qualitatively.

4.1 Denoising Evaluation

We first illustrate the advantage of using median filter-

ing to denoise the depth and normal maps. The depth

and normal maps produced by MVS methods usually

contain noise, especially when the 3D scene structures

are slim or heavily occluded (flowers and trees, etc).

For those outliers containing salt-and-pepper noise, we

use modified median filtering described in 3.1 to prune

them. As shown in Figure 6 (window size is set as 5 for

1555 × 1035 depth and normal maps), the depth and

normal maps are much better after preforming filter-

ing.
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(a) (b) (c)

Fig. 6: Depth and normal maps denoising results.
(a)(b)(c) are pipes, terrace2 and terrace datasets of

ETH3D benchmark. From top to bottom are the origi-
nal color images, the depth maps before denoising, the
depth maps after denoising, the normal maps before
denoising and the normal maps after denoising.

4.2 Upsampling Evaluation

We have compared our proposed method with several

popular edge-aware upsampling methods, such as joint

bilateral upsampling (JBU) [17], bilateral guided up-

sampling (BGU) [4], and the fast bilateral solver (FBS)

[3]. For fair comparison, we use the depth and normal

maps after our denoising optimization processing when

applying these upsampling operators, and set the same

value for the window size of the spatial filtering kernel.

Qualitative Evaluation: Figure 7 and Figure 8 show

the depth maps upsampling comparisons between our
method and JBU, BGU, FBS (low resolution depth
map is 1555 × 1035, the high resolution depth map is

6220× 4141, the upsampling scale is 4, the window ra-

dius used for upsampling is 15, the spatial filter Gaus-
sian σs and the range filter Gaussian σr are both 10 ).
Figure 7(a) and Figure 8(a) are the low resolution color

images and Figure 7(b) and Figure 8(b) are the corre-

sponding low resolution depth maps estimated using

COLMAP (Due to runtime and memory constraints of

GPU, we set ”num iterations” from 5 to 3, and reduce

the number of source images in the patch-match.cfg file

(a) Input color image (b) Input depth map

(c) BGU (d) FBS

(e) JBU (f) Ours

Fig. 7: Depth map upsampling comparisons using dif-
ferent methods on pipes dataset.

from ” auto , 20” to ” auto , 15”, the other param-

eters are all the same as the default parameters).

Figure 7(c)-(f) and Figure 8(c)-(f) are the upsam-

pling depth maps using the above methods. From Fig-

ure 7(c) and Figure 8(c), we can observe that BGU

does not work well on depth map upsmpling. As BGU

is based on the idea that nearby pixels with similar color
in the input also has similar color in the output, which
works well for color images. But obviously the depth

map does not match the corresponding color image in

this means, so the affine models cannot be well fitted

in the bilateral girds defined in this method. Similar to

the BGU, FBS method performs upsampling by solving

optimization problems in the simplified bilateral grid-
s constructed by reference color image, which will be
disturbed when the input depth map is discontinuous.

In addition, the reference color image information is

overused in the optimization, which will make the re-

sulting depth values deviate from the true depth values.

JBU works well when dealing with edge-aware im-

age upsampling. Figure 7(e) and Figure 8(e) show that

JBU produces better upsampling results than BGU and

FBS when performing upsampling of depth maps, but

its runtime is longest. The above three methods will in-

troduce erroneous depth values in the resulting depth

maps, especially at the edges. This will change the depth

ranges of the depth maps, and make the visualization
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(a) Input color image (b) Input depth map

(c) BGU (d) FBS

(e) JBU (f) Ours

Fig. 8: Depth map upsampling comparisons using dif-

ferent methods on terrace2 dataset.

of the depth maps different. This is why the color of re-

sulting depth maps generated by the above three meth-

ods will vary drastically in some areas, especially at

the edges. From Figure 7 and Figure 8, we can observe

that the visualization of our results are most similar to

the input depth maps, showing that our method will

not produce large erroneous depth values. The JBU

method using all pixels in the window for weighted aver-

age interpolation, which will produce large depth error

when the window size is large or the depth values in

the window are not continuous. In contrast, we only
select n depth values with the largest weights as candi-

date depth values (In our experiment, we set n to 4).

What’s more, we use the propagated depth values along

their local 3D tangent planes instead of those candidate

depth values to perform weighted average interpolation,

which will make the depth results more accurate.

In Figure 10, we compare bilinear interpolation (BI),

JBU, BGU, and FBS on the final 3D models based on

the upsampled depth maps and normal maps, respec-

tively. We also compare with the result of COLMAP

performed on the original high resolution images. The

upsampled depth and normal maps produced by JBU,

BGU, and FBS contain many erroneous values, and

many of these erroneous values will be filtered in the fi-

nal fusion step. While there are relatively less erroneous

values in our results, we can observe that our method

obtain more dense 3D models, and the geometry details

are better reconstructed.

In Figure 11, we present two more comparison re-

sults with COLMAP. In these examples, the scenes are
relatively larger. From the results, we can observe that
our method has greatly improved the completeness of

the reconstruction results, and the geometry structures

and details are also preserved well.

Quantitative Evaluation: For quantitative evalua-

tion, we compare the accuracy, completeness and F1
score of the final dense 3D models reconstructed from
different methods. Accuracy is defined as the fraction of

the reconstruction which is closer to the ground truth

than the evaluation threshold distance (Larger is bet-

ter). Completeness is defined as the fraction of the ground

truth which is closer to the reconstruction than the e-

valuation threshold distance (Larger is better). F1 s-

core is defined as the harmonic mean of accuracy and

completeness (Larger is better). The quantitative com-

parisons are performed on the ETH3D benchmark [25],

which contains a software system specifically designed

for evaluating the accuracy, completeness and F1 score

compared with the ground truth. There are five toler-

ances (0.01m, 0.02m, 0.05m, 0.1m, 0.2m) for comput-

ing the accuracy, completeness and the F1 score. Their

MVS datasets contain images with size over 6000 ×
4000. We perform 4 times downsampling for images

in the datasets, and then use the above methods to

upsampling the depth and normal maps obtained by

COLMAP. For fair comparison, the parameters of COL-

MAP for performing in high resolution images and low

resolution images are the same.

Table 1 shows the comparison results between our

method and COLMAP as well as several other upsam-

pling methods on some datasets. The COLMAP rows

are the results of COLMAP performed on the original

high resolution images, and the other rows are the re-

sults of 4 times upsampling using BI, BGU, FBS, JBU

and ours. As illustrated from the table, our method gets
the highest completeness and highest F1 scores, while
COLMAP gets the highest accuracy because of utiliz-

ing the full resolution images. Although our accuracy

is not the highest, it is still comparable in these several

upsampling methods, except for bilinear interpolation.

Because our method performs propagating weighted av-

erage interpolation in a relative large window, which

will introduce some less accuracy when the useful depth

values in the window are less. Bilinear interpolation

only interpolates the two nearest neighbor depth val-

ues, the results are relatively accurate, while it has lit-

tle improvement on completeness. For full comparisons,

we have conducted experiments on the whole ETH3D
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Accuracy Completeness F1 score
pipes 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2

COLMAP 0.968 0.986 0.994 0.996 0.997 0.139 0.212 0.344 0.456 0.572 0.244 0.349 0.511 0.626 0.727
BI 0.850 0.912 0.949 0.964 0.982 0.254 0.337 0.441 0.520 0.605 0.391 0.492 0.602 0.675 0.749

BGU 0.619 0.794 0.942 0.982 0.995 0.067 0.106 0.187 0.272 0.375 0.121 0.188 0.312 0.426 0.545
FBS 0.427 0.620 0.832 0.935 0.979 0.054 0.105 0.209 0.316 0.437 0.096 0.180 0.334 0.472 0.604
JBU 0.857 0.917 0.952 0.966 0.984 0.248 0.327 0.430 0.509 0.595 0.385 0.483 0.592 0.666 0.742
Ours 0.839 0.906 0.948 0.964 0.982 0.275 0.368 0.476 0.553 0.631 0.415 0.523 0.634 0.703 0.768
kicker 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2

COLMAP 0.927 0.967 0.987 0.992 0.994 0.167 0.235 0.359 0.498 0.685 0.283 0.378 0.526 0.663 0.811
BI 0.767 0.856 0.919 0.947 0.970 0.370 0.477 0.631 0.765 0.899 0.499 0.612 0.748 0.846 0.933

BGU 0.520 0.695 0.881 0.957 0.987 0.204 0.275 0.389 0.505 0.665 0.293 0.394 0.540 0.662 0.794
FBS 0.320 0.475 0.687 0.821 0.935 0.119 0.181 0.282 0.399 0.598 0.173 0.262 0.400 0.537 0.729
JBU 0.768 0.855 0.919 0.947 0.971 0.363 0.467 0.619 0.752 0.885 0.493 0.604 0.740 0.838 0.926
Ours 0.763 0.854 0.919 0.946 0.969 0.400 0.518 0.684 0.813 0.925 0.525 0.645 0.784 0.875 0.946

playground 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2
COLMAP 0.694 0.809 0.934 0.983 0.995 0.243 0.383 0.595 0.720 0.816 0.360 0.520 0.727 0.831 0.897

BI 0.591 0.741 0.902 0.967 0.987 0.423 0.575 0.750 0.839 0.896 0.493 0.648 0.819 0.898 0.939
BGU 0.438 0.616 0.845 0.946 0.985 0.263 0.412 0.573 0.674 0.772 0.329 0.494 0.683 0.787 0.866
FBS 0.198 0.311 0.543 0.757 0.894 0.130 0.247 0.418 0.551 0.694 0.157 0.275 0.472 0.638 0.781
JBU 0.593 0.743 0.904 0.968 0.989 0.418 0.568 0.741 0.833 0.892 0.490 0.644 0.815 0.896 0.938
Ours 0.592 0.742 0.902 0.966 0.987 0.431 0.588 0.766 0.857 0.909 0.499 0.656 0.829 0.908 0.946

Table 1: Quantitative comparisons about accuracy, completeness and F1 score of 3D dense models between several
upsampling methods and ours on pipes, kicker and playground datasets.

datasets. Please refer to the supplementary material for
more statistics.

There are some parameters in our selective joint bi-

lateral propagation upsampling method, such as the s-

patial filter kernel (σs), the range filter kernel (σr) and

the radius (R) of the upsampling window. We evaluate

the influences of these parameters in Table 2. In Ta-

ble 2, we make more rigorous comparison using three

minimum tolerances (0.01m, 0.02m, 0.05m) to compute

the accuracy, completeness and the F1 score. We can

see that the accuracy of the reconstruction results us-

ing smaller radius is better than the results using bigger

radius, but the completeness of them is adverse. In gen-

eral, the F1 score of the bigger radius is better. We find

that using bigger σr will produce more accuracy results,

which indicates that spatial weights are more important
than the range weights. The table shows that the com-
pleteness and F1 score are highest when using smaller

σs, bigger σr and bigger radius to upsampling the depth

and normal maps.

Time Complexity: The parameters of COLMAP are

the same when performing original high resolution im-

ages and corresponding low resolution images. Theo-

retically, the runtime of processing low resolution im-

ages should be equal to the runtime of processing corre-

sponding high resolution images divided by the square

of the downsampling rate. As the MVS of COLMAP

is performed on the GPU, it requires a large amount

of memory of GPU. The GPU requirement will be re-

duced by square of downsampling rate when processing

corresponding low resolution images. Our upsampling

Completeness Accuracy F1 score
pipes 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05

σs=10,σr=10,R=10 0.2730 0.3638 0.4696 0.8411 0.9074 0.9479 0.4122 0.5194 0.6281
σs=15,σr=10,R=10 0.2723 0.3629 0.4692 0.8409 0.9073 0.9478 0.4114 0.5185 0.6277
σs=10,σr=15,R=10 0.2740 0.3651 0.4700 0.8415 0.9077 0.9482 0.4134 0.5207 0.6285
σs=10,σr=10,R=15 0.2753 0.3676 0.4761 0.8390 0.9058 0.9477 0.4145 0.5230 0.6338
σs=15,σr=10,R=15 0.2743 0.3663 0.4740 0.8388 0.9058 0.9476 0.4135 0.5217 0.6319
σs=10,σr=15,R=15 0.2764 0.3692 0.4761 0.8391 0.9061 0.9481 0.4159 0.5246 0.6339

Table 2: Quantitative comparisons about completeness,
accuracy and F1 score of 3D reconstruction results pro-

duced by our selective joint bilateral propagation up-

sampling method with different parameters (the spatial

filter kernel (σs), the range filter kernel (σr) and the ra-

dius (R) of the upsampling window) on pipes dataset.

method is highly parallelized and suitable for multi-

thread implementations, and the runtime can almost

be ignored compared with the runtime of COLAMP. So

overall the runtime of our MVS is slightly higher than

the runtime of COLMAP performed on low resolution

images, and is approximately equal to the runtime of

COLMAP performed on original resolution images di-

vided by the square of downsampling rate. We run MVS

of COLMAP for original high resolution images on our
workstation with four NVIDIA GeForce GTX 1080 Ti
GPUs (11 GB frame buffer on each card), and the run-

time of processing one image on our GPU to get depth

and normal maps on pipes datasets is about 220s.

Table 3 shows the runtime of upsampling a depth

map using the above several methods (the low resolu-

tion depth map image is 1555 × 1035, and the corre-

sponding high resolution depth map image is 6220 ×

4141, the upsampling scale is 4, the above algorithms
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BGU FBS JBU Ours
Time (s) 6.7 139.8 822 39

Table 3: The runtime comparison of upsampling a low

resolution depth map with 1555× 1035 to high resolu-

tion one with 6220× 4141 between several upsampling
methods and ours on the pipes dataset.

are processing using a single thread on a single Intel(R)

Core(TM) i7-6700k CPU. The spatial filter Gaussian σs

and the range filter Gaussian σr are both 10 for all the
upsampling methods, the radius of window used in JBU

and ours are 15. Because FBS uses YUV color images

to construct simplified bilateral grids, we only set the

spatial filter σs to 40 and the other parameters are de-

fault parameters). BGU method is the fastest because

of interpolating on the bilateral grids, but gets poor
results. FBS method solves least-squares optimization
problem on simplified bilateral grids, the runtime is re-
lated to the size of the simplified bilateral grids, which

will require a lot of time when the size of simplified bi-

lateral grids are large. JBU method requires the most

time for upsampling, because this method performs a

large number of coordinate transformation between low
resolution images and high resolution images, requiring
large amount of time for the division operation. Our

method is much faster than FBS and JBU. In addi-

tion, our upsampling method performs both depth and

normal maps upsampling simultaneously.

Limitations:Our method also has its limitations. First,

although the completeness and F1 score are highest for
the 3D dense models obtained by our method, the ac-
curacy is not as high as the results obtained by original

high resolution images. Second, our method relies on

the depth and normal maps obtained by COLMAP. If

the depth and normal maps are not accurate enough,

our upsampling method will not get accurate results.

For example, as shown in Figure 9, the low resolution
depth and normal maps lack a lot of data in the box
areas, the high resolution depth and normal maps as

well as the dense 3D model produced by our method

also have no data in the corresponding areas.

5 Conclusion and Future Work

In this paper, we have proposed a selective joint bilat-

eral propagation strategy for unstructured Multi-View

Stereo. Our upsampling method applies the high reso-

lution color images as guided images, and utilizes the

normal vectors to perform depth propagation interpo-

lation on the local tangent planes of 3D scene, which

contributes to the accuracy and completeness improve-

Fig. 9: For an input image (the first row), the depth
and normal maps obtained by COLMAP exhibit a lot of

missing information in the box areas (the second row).
Our upsampled depth and normal maps on the third
row and the final 3D dense model on the last row also

exhibit missing information in those areas.

ment. Our method also greatly reduces the reconstruc-

tion time of the traditional MVS methods.

The proposed framework is universal and can be

used in those MVS methods based on depth map fus-

ing as well as feature point growing strategies. In the

future, we will further accelerate the proposed method.

One idea is to borrow the idea of bilateral guided up-

sampling [4] into our method, and perform ours method

for high resolution images on consumer smartphones in

real time.
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Fig. 10: Multi-View Stereo comparisons. Those datasets are door, terrace2, statue and bamboo from left to right

(the first three are from the datasets of ETH3D benchmark, the last one is ours). From top to bottom, the first

row is the original images, the second row is the result of COLMAP performed on the original high resolution

images, the third to sixth rows are the results of BI, BGU, FBS, JBU and ours (4 time upsample).
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Fig. 11: Multi-View Stereo comparisons. The top row presents some color images of pipes dateset, the second row

is the result of COLMAP on original color images, and the third row is our result. The fourth row presents some

color images of terrace dataset, the fifth row presents the results of COLMAP on original color images (two parts

of the scene), and last row presents our results (two parts of the scene).


