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Abstract

Due to inevitable noises and quantization error, the re-
constructed 3D models via RGB-D sensors always accom-
pany geometric error and camera drifting, which conse-
quently lead to blurring and unnatural texture mapping re-
sults. Most of the 3D reconstruction methods focus on either
geometry refinement or texture improvement respectively,
which subjectively decouples the inter-relationship between
geometry and texture. In this paper, we propose a novel ap-
proach that can jointly optimize the camera poses, texture
and geometry of the reconstructed model, and color consis-
tency between the key-frames. Instead of computing Shape-
From-Shading (SFS) expensively, our method directly opti-
mizes the reconstructed mesh according to color and geo-
metric consistency and high-boost normal cues, which can
effectively overcome the texture-copy problem generated by
SFS and achieve more detailed shape reconstruction. As the
joint optimization involves multiple correlated terms, there-
fore, we further introduce an iterative framework to inter-
leave the optimal state. The experiments demonstrate that
our method can recover not only fine-scale geometry but
also high-fidelity texture.

1. Introduction

With the emergence of RGB-D sensors, it has become
more convenient to reconstruct the scenes and objects in
our daily life. Moreover, after the vigorous development
of the 3D reconstruction community in recent years, the
3D reconstruction technology using RGB-D sensor has
achieved a qualitative leap. We can reconstruct more de-
tailed 3D models [3, 8, 18, 19, 21, 31, 32, 36, 38] and tex-
ture [2, 15, 20, 22, 28, 30, 40] for indoor scenes. However,
the reconstructed models are far from being directly applied
to applications, as the geometric accuracy and texture qual-
ity of 3D reconstruction results do not meet the requirement
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Figure 1. Joint texture and geometry optimization on RGB-D
scanned geometry. (a) Without any optimization. (b) With the
proposed joint optimization.

of applications like VR/AR, games, CAD manufacturing,
and 3D printing.

A high-quality 3D reconstructed model via the RGB-D
sensor should reach two basic requirements, correct geom-
etry and high-fidelity texture. They are mainly degraded by
three factors: (1) the measuring error introduced by data ac-
quirement equipment like noises, lens distortion and quanti-
zation error, (2) the accumulated errors during camera pose
estimation and (3) the geometric error due to the sharp ge-
ometric feature over-smoothed by the moving weighted av-
erage of truncated signed distance field (TSDF) [7], which
is commonly utilized as the implicit representation of depth
data integration. Due to the geometric error and the camera
drifting, the result of texture mapping in 3D reconstruction
inevitably exhibits blurring and ghosting artifacts.

To achieve high-quality 3D reconstruction based on
RGB-D sensor, various methods have been put forward. Wu
et al. [33] and Zollhöfer et al. [41] refined reconstructed ge-
ometries with the guidance of shading information provided
by color images, which have higher resolution than corre-
sponding depth images, and hence are able to provide more
visual cues. However, SFS-based geometry refinement eas-
ily suffers from the texture-copy problem [25]. Rather than
modifying geometric shapes, Fu et al. [11], Bi et al. [2]



and Zhou and Koltun [40] kept the geometry unchanged
but modified the texture of the 3D model to compensate
for geometric errors derived from reconstruction calcula-
tion. Different from previously mentioned works which
only focus on either geometry refinement or texture opti-
mization, Intrinsic3D [20] jointly optimized geometry, tex-
ture, camera poses, and scene lighting based on SFS and
spatially-varying spherical harmonics (SVSH) from subvol-
umes. While this method is effective in certain scenes, it is
super time-consuming and also suffers from the problem of
texture-copy.

In this paper, we also jointly optimize camera poses, ge-
ometric detail and texture. However, different from [20],
we build the proposed method directly on the reconstructed
mesh model, which can achieve more detailed geometry
than encoded in a TSDF representation. Therefore, we pro-
pose a novel method to enhance the geometry and utilizes
the enhanced shape normals as a prior guidance to drive the
adjustment of vertex positions; meanwhile, the texture and
geometric consistency serve as complementary constraints
to ensure the movement is reasonable. Accordingly, the up-
dated geometry mesh will benefit the correction of textures
and camera poses and not trigger texture-copy artifacts. The
geometry and texture optimization results of the proposed
method are shown in Figure 1. We demonstrate the effec-
tiveness of the proposed method on various datasets. The
results show that the proposed method can not only effec-
tively enhance the geometry detail but also refine the texture
of the reconstructed model.

2. Related Work
Geometry Refinement. Many methods [14, 16, 24, 26, 33,
37] focus on depth image refinement to improve the quality
of 3D reconstruction. Although these methods work well in
depth image refinement, their contributions to the final 3D
model reconstruction are limited due to the inherent defect
of the 3D reconstruction algorithm. Some other methods
directly optimize the geometric model to refine the recon-
struction. Xie et al. [34] proposed the angle profile as a new
measurement to infer the hidden micro-structures from the
existing surface and enhanced the geometric detail. Deng et
al. [9] presented a variational method based on subdivision
representation for both lighting and geometry, which was
suitable for surface reconstruction in unknown illumination
conditions. Romanoni et al. [27] refined a semantically an-
notated mesh through single-view variational energy min-
imization coupled with photo-consistency. Choe et al. [4]
used shading cues captured from an IR camera instead of
the RGB camera to refine the geometry of 3D mesh. Dzit-
siuk et al. [10] used plane priors to filter out noise vertices
during online reconstruction and got a clean and complete
reconstructed model. Although the above methods can re-
fine the geometry of the reconstruction result, they do not

consider texture or do not perform any texture optimization.
Texture Optimization. Waechter et al. [39] used the
Markov Random Field to select an optimal image for each
triangle face as texture. Then they proposed a global color
adjustment strategy to alleviate the visible seams between
textures. Zhou and Koltun [40] used a color consistency
method to optimize the camera poses and a local image
warping method to compensate for the geometric error,
which can obtain sharp texture results. Fu et al. [11] pro-
posed a global-to-local non-rigid optimization method to
correct camera poses and compensate for the geometric er-
ror by texture coordinate warping. This method can effec-
tively alleviate the seams between textures and obtain sat-
isfactory texture results. Bi et al. [2] used a patch-based
image synthesis strategy to generate a target color image
for texture mapping to avoid texture misalignment caused
by geometric error and camera drifting. Kim et al. [17] and
Alldieck et al. [1] focused on texture mapping for dynamic
objects and humans. 3DLite [15] applied a simple pla-
nar abstraction to represent the reconstructed model. Then
they used the planar-based constraint to optimize the cam-
era pose and the texture on the abstraction planes. Although
these methods can generate visually plausible texture, they
do not perform optimization for the geometry.
Joint Optimization. Wang et al. [30] used planar primi-
tives to partition the model to generate a lightweight and
low-polygonal mesh, then jointly optimized plane parame-
ters, camera poses, texture and geometry using photometric
consistency and planar constraints. However, this method
relies on plane priors and is not suitable for complex non-
planar scenes. Intrinsic3D [20] presented a novel method to
optimize geometry, texture, camera poses, and scene light-
ing simultaneously, which was based on SFS and SVSH us-
ing subvolumes. They can obtain high-quality 3D recon-
struction with consistent texture. However, this method re-
lies on SFS and needs to decompose the illumination of the
scene, which easily causes the problem of texture-copy.

3. Method

The proposed method aims at getting the 3D recon-
structed model with fine-scale geometric detail and high-
fidelity texture via a commodity RGB-D camera. We pro-
pose a joint optimization framework to this end. Figure 2
shows the overview of the proposed method.

In this section, we will elaborate on each step of the pro-
posed method. Let M0 represent the initial reconstructed
mesh model, {vi} be the vertex set of M0. We use D to
represent the depth image, C denotes the color image, and
I represents the corresponding intensity image. MC rep-
resents the reconstructed model M with texture color. T
is the camera pose, which can transform a vertex v from
the local camera coordinate system to the world coordinate



Input

D
ep

th
R

G
B

Joint Optimization

Output

Mesh

Preprocessing

Key-frames

Key-frames 
Selection

KinectFusion

Texture 
Mapping

③ Geometry Optimization

① Texture Optimization② Color Consistency 
Correction

Figure 2. The overview of the proposed method. The input of the proposed method is an RGB-D sequence or stream. We utilize the depth
images to reconstruct the initial 3D model and extract key-frames from the color images according to image quality. Subsequently, camera
poses, geometry, texture, and color consistency between key-frames are jointly optimized in an iterative manner. The output is a 3D model
with detailed geometry and high-fidelity texture.

system. We define T as:

T =

[
R t
0 1

]
, (1)

where R is a rotation matrix and t is a translation vector.
Let Π represent the perspective projection including de-

homogenization, which projects a vertex v = [x, y, z]T

from model M to the pixel u(u, v) of the image plane.

3.1. Mesh Reconstruction and Key-frames Selection

The input of the proposed method is an RGB-D sequence
or stream acquired by a consumer RGB-D camera. We
use the Microsoft Kinect to capture the RGB-D image se-
quence. Each RGB-D frame in the sequence includes a gen-
eral RGB image and an aligned depth image. Then we use
KinectFusion [23] to generate the 3D mesh modelM0 of the
scene from the depth image sequence and record the eval-
uated camera pose Ti of each frame i. We further subdi-
vide the reconstructed model according to the method [40].
KinectFusion can also be replaced with other state-of-the-
art methods like BundleFusion [8] and the method of [5],
which can obtain more accurate initial reconstructed model
and camera poses.

To eliminate redundant color images and ensure the cov-
erage of the reconstructed model, we extract the key-frames
as the input texture images. The extraction procedure is per-
formed in a recursive manner, where the new key-frame is
selected if its corresponding camera pose satisfies the fol-
lowing formula:

Ci ={Ci∈ ΦKF :∠(Rk,Ri)>30◦||Dist(tk,ti)> 0.2}, (2)

where ΦKF represents the key-frame set, k is the index of
the last key-frame before the current frame i. ∠(Rk,Ri)
represents the angle between the two rotation matrices Rk

and Ri, and Dist(tk, ti) represents the Euler distance be-
tween the two translation vectors tk and ti. The field of

view for Kinect is about 57◦ in horizontal and 43◦ in verti-
cal, and the practical depth range is 0.5 ∼ 3.5m [13], so we
set the thresholds 30◦ and 0.2m respectively.

The hand-held depth camera easily introduces motion
blurring and jitters. To avoid the influence of the blurring
images in key-frames ΦKF on texture and geometry opti-
mization, we replace the initial key-frames with the clearest
frames beside them. We use the image blurring measure-
ment of [6] to get the score of each frame within the win-
dow around the key-frame. Then we replace the key-frame
using the frame which obtains the highest score within the
window. We set the window size to [−5, 15].

3.2. Joint Geometry and Texture Optimization

After preprocessing, we can get an initial 3D mesh
model M0, a key-frame sequence {Ck ∈ ΦKF} with corre-
sponding camera poses {Tk}. Due to geometric errors and
camera drifting, it is difficult to obtain consistent texturing
result for the reconstructed model through the acquired key-
frames. In order to restore high-fidelity geometries and tex-
tures, we jointly refine the reconstructed 3D model and tex-
ture to recover high-frequency geometry details and high-
quality textures. We implement our joint optimization strat-
egy in three steps: (1) Optimizing the camera pose of each
key-frame by minimizing the color inconsistency between
the vertex on the model and its projection on each visible
key-frame. (2) Correcting color inconsistency caused by
illumination changes between key-frames. (3) Optimizing
the position of the vertex on the model to make it not only
physical correct but also color-consistent with its projection
on visible key-frames.

3.2.1 Camera Poses and Texture Optimization

We first compute the initial texture ofM0 and get the texture
model MC

0 . To get the texture of the mesh model M , we
project each vertex v on M onto all the visible key-frames



to get all the color values of this vertex on the key-frames,
then calculate the color of the vertex v by weighted averag-
ing. We use κij = cos(θ)2/d2 as the weight of each vertex
vi corresponding to the j-th key-frame, where θ is the an-
gle between the normal of vertex vi and its view direction
at the j-th key-frame, and d is the distance from vertex vi

to the camera center of the key-frame j. Due to the cam-
era drifting and geometric error, it is easy to get inaccurate
texture colors via projection, therefore, resulting in blurring
and ghosting artifacts in the texture model MC

0 as shown in
Figure 1(a).

During each iteration of the joint optimization, we first
optimize the camera pose T of each key-frame. We adopt
a similar idea of [40] to optimize the camera pose of each
key-frame to ensure that the texture of the model MC is as
consistent as possible with the texture obtained by project-
ing it onto all the visible key-frames. The difference is that
we consider not only color consistency but also geometric
consistency, which is more robust to the texture-less scene.
The objective Etex is defined as:

Etex = λcEc + λgEg, (3)

where Ec is the photometric consistency term and Eg is the
geometric consistency term. We experimentally set λc =
1 and λg = 100 to balance the metric difference between
terms, and put more weight on geometric consistency for
alleviating camera drifting in texture-less.
Ec is defined the same as the method of [40], which

ensures the photometric error between the vertex on MC

and its corresponding projected texture on each key-frame
is minimum.

Ec =

#KF∑
i

#vert∑
j

(
C(vj)− Ii(Π(T−1

i vj))
)2
, (4)

where C(vj) is the intensity value of vertex vj on the tex-
ture model MC , i is the index of the key-frames, j is the
index of vertex on MC , #KF represents the number of the
key-frames and #vert represents the number of vertices.
Eg ensures that the depth of each vertex on MC should

be as consistent as possible with the corresponding depth on
the depth image of each visible key-frame.

Eg =

#KF∑
i

#vert∑
j

(
ϕ(T−1

i vj)−Di(Π(T−1
i vj))

)2
, (5)

where ϕ(v) is a function which fetches the third element of
the vector v.

After the camera pose optimization, we calculate the tex-
ture color of each vertex vi on the model M to generate a
new color texture model MC as described above.

(a) Key-frames before color consistency

(b) Texture result without color 
consistency optimization

(c) Texture result with color 
consistency optimization

(d) Key-frames after color consistency

Figure 3. Qualitative comparisons between key-frames and texture
results with and without color consistency correction.

3.2.2 Key-frames Color Consistency

The color images captured by the RGB-D sensor are easy
to be affected by the factors such as the auto-white bal-
ancing, auto-exposure, and the illumination changes. These
factors will cause color inconsistency between the color im-
ages captured from different views. To reduce the negative
influences of the color inconsistency on our joint optimiza-
tion, we optimize the color consistency across different key-
frames after camera poses optimization in each iteration.

Inspired by [15], which used the method of NRDC [12]
to color inconsistency between images, we also adopt a
three spline curves Bj(C(vi)) = (B

{r,g,b}
j (C(vi))) as a

color transfer function to transfer the color of the vertex vi

on the model MC to the color of its projection on the j-
th key-frame. With the texture color of the model MC as a
reference, the color of all key-frames is corrected to achieve
color consistency between all key-frames. We use the fol-
lowing formula to find the optimal spline curves B as color
transfer function for each key-frame:

Ecolor=

#KF∑
i

#vert∑
j

||C(vj)−Bi(qij)||2+λb

#KF∑
i

#vert∑
j

(B
′
i(xj)−1)2, (6)

where qij is the color value of the pixel on the i-th key-
frame corresponding to the projection of the vertex vj . Ac-
cording to the suggestion of [15], we regularize the deriva-
tives of the transfer functions B

′

i(xj) ≈ 1. We also set
λb = 0.1 and xj is from 0 to 250 with interval 25.

After receiving the optimal color transfer function for
each key-frame according to Eq. 6, we adjust the color of
each key-frame using the corresponding color transfer func-
tion B to achieve color consistency across key-frames, as
shown in Figure 3.

3.2.3 Geometry Optimization

In this step, we recompute the color value of each vertex on
the model MC . If the color of each vertex is not consistent



with the color value that it obtains from the key-frame by
perspective projection, we consider that it is due to geomet-
ric reconstruction error. Therefore, we need to further refine
the position of the vertex on the model MC to correct the
reconstructed geometric error.

To optimize the color consistency between the recon-
structed model MC and the projected texture on the key-
frames, we compute an offset vector for each vertex on the
model to correct the geometric error. We define the energy
function as:

Egeo = Etex + λHEH + λLEL + λRER, (7)

where Etex is the photometric and geometric consistency
term defined as Eq. 3, EH is the high-boost enhancement
term, EL is the Laplacian data term, and ER is the regu-
larization term. λH , λL and λR are coefficients balancing
between terms.
EH is used to boost the high-frequency geometric de-

tail of the reconstructed model MC . First, we separate the
high-frequency detail of the model M0 by subtracting the
smoothed version of M0 from the original model M0. Then
we amplify the high-frequency of the model using the high-
boost strategy [35]. Finally, we take the high-boost normal
as a normal consistency constraint to refine the geometry
of the reconstructed model according with the photometric
consistency and geometric consistency as guidances. The
high-boost enhancement adjusts the position of the vertex
to fit the high-boost normal of the triangle adjacent to the
vertex. The normal-based error at vertex v is defined as the
area-weighted sum of squared difference between smooth
normal ns(R) of triangle R and high-boost normal nh(R)
of triangle R:

En =
∑

i∈Υ(v)

A(Ri)(ns(Ri)− nh(Ri))
2, (8)

where Υ(v) is the index set for 1-ring neighborhood trian-
gles around v, Ri represents the i-th adjacent triangle of
vertex v. A(R) is the area of the triangle R. ns(R) and
nh(R) are the smoothed normal and the boosted normal of
triangle R, they can be calculated according to work [35].

We can minimize Eq. 8 to enhance the position of vertex
v to fit the high-frequency detail of the reconstructed model.
The partial derivative of Eq. 8 with respect to v is given as:

∂En

∂v
= 2

∑
i

(
∂A(Ri)

∂v
− ∂A(Si)

∂v

)
, (9)

where Si is a triangle generated by projecting triangle Ri

onto the plane defined by the boosted normal nh(R). Then
we can update the position of vertex v as:

vh = v − λhb
∑

i∈Υ(v)

(
∂A(Ri)

∂v
− ∂A(Si)

∂v

)
, (10)

where vh is the refined position by high-boost enhance-
ment. We set λhb = 0.2 in all the experiments.

To recover high-frequency geometric details, the opti-
mized position of each vertex on the reconstructed model
should restore the high-frequency detail as much as possi-
ble. We define the high-boost term EH as:

EH =

#vert∑
i

||vi − vh
i ||2. (11)

EL uses the Laplacian operator [29] to preserve local
geometric features and suppress irregular vertex movement
during geometric optimization.

EL =

#vert∑
i

||vi −
1∑
j ωij

∑
j∈Ωi

ωijvj ||2, (12)

where Ωi is the index set for vertices in 1-ring neighborhood
of vertex vi and j belongs to Ωi, ωij is the weight between
vertex vi and vj . In our implementation, we set ωij = 1.
ER ensures that each vertex v will not deviate too far

away during the optimization procedure and is defined as:

ER =

#vert∑
i

||vi − ṽi||2, (13)

where ṽi is the adjusted position of vertex vi from last iter-
ation.

3.3. Minimization

We optimize the parameters (T, B,V) in an iterative
manner, where we apply external iterations to perform joint
optimization. In each external iteration, we preform three
internal optimization in turn. First, we fix B and V, and
minimize E(T) = Etex to optimize the camera pose T of
each key-frame. Second, we optimize E(B) = Ecolor to
recompute the color transfer function B of each key-frame
according to the optimized camera pose T and MC . Fi-
nally, we fix T and B to minimize E(V) = Egeo to refine
each vertex v on the reconstructed model MC .

To achieve a balance between convergence and perfor-
mance, we find that setting the external iteration number
to 5, and the internal iteration number respectively in each
step to 50, 10, and 20 can achieve good performance. The
trend of convergence rate and number of external iterations
is illustrated in Figure 4.

4. Results
In this section, we first evaluate our method against the

state-of-the-art methods [2, 11, 20, 40] on public RGB-
D datasets and the datasets acquired by ourselves using
Kinect. Then we perform the ablation studies to validate the
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Figure 4. The changes of Ec with and without geometry optimiza-
tion according to different external iteration numbers on dataset
(a) Tomb-statuary and (b) Bricks.

effectiveness of each component in our method. Finally, we
discuss the limitations of our method. All the experiments
are conducted on a computer with an Intel i7 3.6GHz CPU
and 8GB RAM, and GeForce GTX1060 6GB. We use the
codes publicly released by the authors [20], [40] and [11],
and a implementation version of [2] by ourselves. We em-
pirically set λH = 1× 104, λL = 1000 and λR = 1000.

4.1. Evaluation on Public Datasets

We first compare the texture and geometry optimization
results between our method and its most related method In-
trisic3D [20] on datasets provided by Intrisic3D. From the
close-up of the comparison results in Figure 5, it is notable
that our method achieves more striking results in both tex-
ture optimization and geometry optimization. Since Intrin-
sic3D [20] is based on SFS, it works better in some tiny
geometric details, for example, the eyes and eyebrows in
the dataset tomb-statuary. However, due to the inherent de-
fect of the SFS-based method, Intrinsic3D is easy to suffer
from texture-copy, as shown in the datasets gate and bricks.
In addition, our method introduces a high-boost term to fit
the normal of high-frequency geometric detail, which can
restore better medium scale geometric details than Intrin-
sic3D, as shown in Figure 5.

We also compared our method with the state-of-the-art
methods of Zhou et al. [40], Fu et al. [11] and Bi et al. [2]
on texture optimization, and Intrinsic3D [20] on texture
and geometry optimization on the dataset fountain provided
by [40], as shown in Figure 7. Notable that the texture op-
timization results generated by our method are comparable
to [2, 40, 11], which are specially designed for texture op-
timization. While they perform well on textures, the ge-
ometries are still remain unchanged. Instead, our method
optimizes not only the texture mapping result but also the
geometry, and produces clear and detailed results as com-
pared to Intrinsic3D [20], which also conducts a joint opti-
mization scheme.

4.2. Evaluation on Collected Datasets

To demonstrate that the proposed method is effective
to any consumer RGB-D cameras, we use the Microsoft
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Figure 5. The comparison results with Intrinsic3D [20] on the
datasets provided by Intrinsic3D [20]. (a) The reconstructed
model and texture results. (b) The texture and geometry optimiza-
tion results provided by Intrinsic3D [20]. (c) The texture and ge-
ometry optimization results of the proposed method.

Kinect v1 captured RGB-D image sequences as input.
Figure 8 shows the qualitative geometry comparisons be-

tween our method and Intrinsic3D [20] on our newly col-
lected datasets. From the close-up images, we can see that
our method can restore geometry with more high-frequency
details. Due to the limited resolution of color and depth
images captured by Kinect v1, it is challenging to directly
capture very high-frequency geometric and textural details.
Yet, our method is able to take into account not only the ge-
ometric and color consistency but also the normal enhance-
ment of high-frequency geometry. Therefore, our method
can restore more high-frequency geometric details. Be-
sides, due to the ambiguity of the SFS-based method on pro-
cessing textural and geometric details, Intrinsic3D is easy
to introduce texture-copy artifacts, as shown in Figure 9. To
restore high-quality geometric details, Intrinsic3D [20] re-
quires to divide the TSDF many times, which is both time
and memory consuming. However, our method directly op-
timizes the mesh of the reconstructed model, which requires
less memory and time to reach the geometry and texture op-
timization goals. The running time of the proposed method
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Figure 6. The texture optimization comparison results. (a) The texture results by KinectFusion [23]. (b) The texture results by Fu et al. [11].
(c) The texture results by Zhou et al. [40]. (d) The texture results by the proposed method.

(a)

(d)

(c)(b)

(e) (f)

(g) (h) (i)

Figure 7. The qualitative comparisons with the state-of-the-art
methods on public dataset fountain provided by [40]. (a) and (g)
are the texture and geometry result by KinectFusion [23]. (e) and
(h) are the texture and geometry optimization results by Intrin-
sic3D [20]. (f) and (i) are the texture and geometry optimization
results by the proposed method. (b), (c) and (d) are the texture
results by [11], [40] and [2] respectively.

(a) Fusion (b) Intrinsic3D (c) Ours

Figure 8. Qualitative geometry comparisons between KinectFu-
sion [23], Intrinsic3D [20] and our method on datasets keyboard
and walker captured by ourselves using Kinect.

is reported in Table 1. In contrast, Intrinsic3D [20] has to
spend days on processing these datasets in the same com-
puting environment.

Figure 6 shows the texture comparisons between our
method and the methods of [40] and [11]. Due to the auto-
exposure and illumination changes, color images captured
from different views easily suffer from color inconsistency.
From Figure 6, it is can be seen that the color inconsistency
between color frames have a significant impact on the tex-
ture result of [40] and [11]. Since the method [40] does not

Dataset #face #vert #KF Time
Bricks 1,248,351 666,927 31 75.26
Gate 1,270,574 648,874 39 117.60
Tomb-statuary 475,024 243,443 11 31.32
Keyboard 537,900 270,767 12 41.29
Walker 1,616,112 817,145 18 52.05

Table 1. Running time (minute) of the proposed method on differ-
ent datasets.

use any color consistency processing, when there are drastic
color inconsistencies between key-frames, the final results
demonstrate obvious brightness inconsistency, as shown in
the yellow box in Figure 6(c). While the method [11] uses a
global to local non-rigid correction to stitch the textures, the
seams between textures cannot be eliminated completely,
as shown in Figure 6(b). In contrast, the proposed method
uses an effective color consistency processing, so the gen-
erated texture color tends to be consistent. Additionally,
the method of [40] uses a local warp method to compen-
sate for the reconstructed geometric error to correct texture
misalignment. Therefore, there will be some significant dis-
tortion in the texture result, as shown in the red box of Fig-
ure 6(c). However, the proposed method directly performs
color consistency between key-frames and refines the ge-
ometry, which can get better texture and geometric details
than these methods.

4.3. Ablation Studies

In this section, we investigate the effectiveness of each
component of our method. To assess the effectiveness of
the color consistency optimization, we compare the texture
mapping results of our method with and without color con-
sistency optimization, as demonstrated in Figure 3. It can
be observed that color consistency optimization can correct
color consistency across key-frames and effectively sup-
press the influence of illumination changes on the texture-
mapping result, as shown in Figure 3(c).

Figure 4 shows the convergence rate ofEc of our method
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Figure 9. The texture-copy artifact comparison results. (a) The
texture-copy artifact on the texture and geometry optimization of
Intrinsic3D [20]. (b) Our method is not affected by texture-copy.

(a) (b)

(c) (d)

Figure 10. The comparison results of geometry optimization with
different weights. (a) λL = 1 × 105 and λR = 1 × 105. (b)
λc = 100 and λH = 1× 106. (c) λc = 100. (d) λH = 1× 106.

respectively without geometry optimization and with geom-
etry optimization in external iterations. The value of Ec

(Eq. 4) directly reflects the quality of the texture. From Fig-
ure 4, it is notable that our geometric optimization method
makeEc converge faster and converge to a better value than
the method without geometry optimization.

Figure 10 shows the mesh model comparisons between
our method with different coefficients. To control variables,
we only change one or two coefficients each time and keep
the others as default. To demonstrate the effectiveness of
Laplacian and regularization terms, we increase λL and λR
from 1000 to 1 × 105. From Figure 10(a), we can see
that the noises will significantly decrease while the detail
is smoothed. To demonstrate the joint effectiveness of color
consistency term and high-boost enhancement, we increase
λC from 1 to 100 and λH from 1 × 104 to 1 × 106. It
can be observed from Figure 10(b) that the geometric de-
tail is enhanced while the vertices drifting. To demonstrate
the effectiveness of the color consistency term, we increase
λC from 1 to 100. It can be see from Figure 10(c) that the
tiny geometric detail is enhanced while the high-frequency
detail is not restored. To demonstrate the effectiveness of
high-boost enhancement, we increase λH from 1 × 104 to
1×106. It can be observed from Figure 10(d) that the high-
frequency detail is enhanced, but the tiny geometric detail
is missing and some vertices drifting without color consis-
tency and depth consistency constraints.
Limitations. While our method can effectively enhance the
geometry and texture of the reconstructed model, it cannot
get rid of the case that the geometry of the reconstruction is
significantly missing. For example, due to the limited reso-
lution and noises within depth image, some tiny objects may
fail to be reconstructed in the initial session. In this case,
even with the enhancement of our optimization framework,
the missing geometry is still unable to be recovered.

5. Conclusion

In this paper, we have presented a joint optimization
method to refine the texture and enhance the geometry of the
3D reconstruction by an RGB-D camera, which optimizes
the camera poses, geometry and texture of the reconstructed
model, and color consistency between key-frames simulta-
neously. First, we use the photometric consistency and the
geometric consistency as cues to optimize the camera poses
and texture of the reconstructed model. Then, we use the
texture optimization result to correct the color inconsistency
between key-frames. Finally, we refine the geometry of the
reconstructed model by photometric and geometric consis-
tency, as well as the normal of the high-frequency geometry
cues. After such joint optimization, we can achieve not only
high-fidelity textures but also high-quality geometries.
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