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Abstract

Deriving the visual connectivity across large image collections is a computationally expensive task. Different from
current image-oriented match graph construction methods which build on pairwise image matching, we present
a novel and scalable feature-oriented image matching algorithm for large collections. Our method improves the
match graph construction procedure in three ways. First, instead of building trees repeatedly, we put the feature
points of the input image collection into a single kd-tree and select the leaves as our anchor points. Then we
construct an anchor graph from which each feature can intelligently find a small portion of related candidates
to match. Finally, we design a new form of adjacency matrix for fast feature similarity measuring, and return
all the matches in different photos across the whole dataset directly. Experiments show that our feature-oriented
correspondence algorithm can explore visual connectivity between images with significant improvement in speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: computational
photography—image-based modeling

1. Introduction

With the explosive growth in the availability of image data
online, image collections have become an important medium
in computer graphics and vision. These unorganized views
show a lot of famous sites and are rich of geometric infor-
mation. Over the years, we have witnessed the emergence of
a number of novel Web-scale graphic systems that have been
developed based on large-scale image collections, for in-
stance, [SSS06] [TSH∗11]. A central part for these applica-
tions is to construct a match graph exploring the connectiv-
ity relationships between overlapping images and indicating
feature correspondences across the whole photo collection.
However, constructing such match graph to an image col-
lection usually involves massively exhaustive pairwise fea-
ture comparisons [MA10] [SBBF12] [ML14]. The compu-
tational cost for this process grows exponentially with the
increasing of image number. Therefore, it is desirable to ex-
ecute pairwise matching operations as minimal as possible,
at the meantime efficiently obtain as complete a match graph
as possible.

Internet photo collections usually represent very non-
uniform samplings of viewpoint. Most image pairs exhibit
sparse visual correspondence. It is often unnecessary to

check all the image pairs, as a subset is sufficient for most
applications. Many recent state-of-the-art image matching
systems, for example [ASS∗09] [HGO∗10] [FFGG∗10]
[GBQG09], have been built on top of this idea. For large
datasets, they make use of the image retrieval techniques
such as bag-of-words models and inverted files to extract
a small portion of similar image pairs on which they per-
form detailed feature matching. This kind of methods dras-
tically reduces the overall computation, and produces a well
approximated match graph. However, bag-of-words models
require an additional learning phase and rely on query ex-
pansion stage to dense the final match graph. Both of them
introduce overhead at the image retrieval stage which in-
creases the total running time, especially when the image
sets are not sufficiently large.

On the other hand, matching irrelevant features between
overlapping images is also undesirable. For instance, Fig.1
shows three visual overlapping images from St. Pauls
dataset. It is easy to see that, although there are some good
feature matches linking these similar photographs, most fea-
tures between them are unmatched. Hence querying nearest
neighbors for such irrelevant features of each overlapping
image pair is also a waste of time.
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Figure 1: Three photos from the St. Pauls dataset captured
in different viewpoints. Although each image pair exhibits
spatial overlap with some common visual features (shown as
links with blue color between them), many features (white re-
gions on the circle) are unmatched. Matching these features,
even if they are in similar image pairs, is also unnecessary.
Thus our motivation is, for each feature, to intelligently pre-
dict a small portion of feature candidates to match, rather
than process at the level of images.

Different from traditional image-oriented pairwise image
matching systems, we approach this through a new feature-
oriented way that treats the feature, rather than a whole im-
age, as basic processing unit (a vertex in the match graph).
Motivating our method is the observation that interactions
between feature pairs further than a certain distance apart
can be safely ignored, as the probability to be matches be-
comes very low. Intuitively, if each feature could success-
fully in advance find its all potential candidates from the
given image collection, then we just need to verify a very
small portion of vertices to form a dense match graph effi-
ciently. Based on the match graph, a number of interesting
works can proceed on [CS13] [TKKT12].

Thus in this paper, we propose a fast feature-oriented
dense match graph construction algorithm for large photo
collections. Our method mainly improves the construction
procedure in three ways. Firstly, instead of repeatedly build-
ing kd-tree for every image pair, we directly put the feature
points of the input photo collection into a single kd-tree, and
each feature can be linearly represented by a constant num-
ber of nearby leaves (which act as anchor points in our pa-
per). Secondly, image matching can be significantly acceler-
ated by intelligently comparing each feature (not image) to
a small portion of its potentially related candidates. It works
by modeling the feature relationships using an anchor graph.
This makes features only need to execute a few comparison
operations with corresponding anchor points to select related
candidates. Thirdly, based on the constructed anchor graph,
we design a new form of adjacency matrix for fast feature

similarity measuring, and return each feature’s all visual cor-
respondences across the whole dataset directly.

Our algorithm is non-iterative and learning-free. We
demonstrate the effectiveness of our algorithm on several
image collections with the sizes range from tens to thou-
sands. Experiments show that our method can efficiently
construct a dense match graph from the image collection
within a significant short period of time, even performed on
a single CPU core.

This paper is organized as follows. In section 2, we give
the related work, and section 3 is the main part of our paper,
where we describe our proposed feature-oriented matching
algorithm and give a detailed analysis of its complexity. In
section 4, we show the performance of our algorithm on ef-
ficiency and accuracy. Next we show a 3D reconstruction
application in section 5 and conclude this paper in section 6.

2. Related Work

The problem of image collections matching has recently
gained great attention in both computer vision and computer
graphic areas. It is a central element for image-based model-
ing [BNB13], image-based rendering [CDSHD13], and im-
age editing [ZGW∗14] [HSGL13]. However, the quadratic
computational time for pairwise image matching signifi-
cantly constrains their application range. In this section, we
discuss two relevant techniques that have been proposed to
facilitate image collections matching: approximate nearest
neighbor models and image retrieval based methods.

2.1. Approximate nearest neighbor models

Approximate nearest neighbor (ANN) models have been
widely used in feature matching. For each pair of images,
[MA10] works by directly inserting the features of one im-
age into a kd-tree and querying the tree using the features
from the other image. Recently, many novel ANN meth-
ods are also designed which can be employed for fast pair-
wise image matching, e.g. LDAHash [SBBF12] and FLANN
[ML14]. However, to handle collections with thousands to
millions of images, directly using these ANN algorithm in
the pairwise manner are still incompetent in reality.

In order to improve matching efficiency, it is reasonable
to reduce comparison operations. [FFG09] [GFF10] employ
a constant number of feature descriptors in each image and
build a similarity linkage by matching each feature to its k
nearest neighbors. Then, each image is matched to a small
constant of photographs that have greatest match numbers.
However the final match graph produced in this paper is
sparse which means that there may be a portion of impor-
tant image correspondences losing.

In a similar way, [Wu13] present a preemptive feature
matching algorithm by exploiting the scales of invariant fea-
tures. He discovers that the features with top-scale values of-
ten have more chances to be matched. This means the more
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similar pairwise images are, the more top-scale features are
on par with other features. So it is desirable to test only a
few large-scale features to decide whether the image pair is
necessary to be fully matched. This algorithm is efficient.
Nevertheless, for some image collections, this method may
produce poor results as it has a small chance of losing weak
links due to improper thresholds or occlusion.

An interesting notion is employed in [TL09] and [NYS11]
that, when detecting features from images, many features
which are meaningless are extracted. Rejection of useless
features can provide significant savings in ANN searching.
While these may also give rise to sparse visual connectivity,
as for some applications like [BNB13], the features around
leaves and trees are informative descriptors.

2.2. Image retrieval based methods

Another intuitive way to speed up image matching is to di-
rectly retrieve similar candidates for each image. Image re-
trieval based methods leverage special classifiers or distance
metrics ideally learned from relevant datasets to efficiently
determine likely images in large collections.

Many recent state-of-the art image matching systems are
based on Bag-of-Visual-Features (BoVF) models which are
inspired from text retrieval. For instance, in order to build the
scenes from city-scale image collections in a day, [ASS∗09]
first retrieve a constant of candidates for each images with
a vocabulary tree [NS06], then dense the connectivity of the
match graph by using query expansion [CPS∗07], and finally
match each image to their selected candidates through ANN
searching on a cluster with 500 computer cores. In a simi-
lar way, [HGO∗10] designs an image tourism system called
Image Webs which divides the matching procedure into two
phases. First, a standard BoVF model is used to produce a
set of connected components. In the next phase, algebraic
connectivity from spectral graph theory is applied to dense
each connected component.

Although, BoVF models have been widely used in col-
lection matching problems, these metrics are noisy accord-
ing to different training sets. [LSG12] proposes an algorithm
identifying large connected components in large image col-
lections and introduce the idea of relevance feedback to im-
prove decision making over time. [KTT∗12] poses the pro-
cess of matching as a link prediction problem and increases
the match graph by iterating between the estimation of po-
tential links and their verification. While in order to lever-
age this kind of matching algorithm, a good training set and
cloud platform are recommended.

Unlike above approaches based on a massively parallel
cluster, [RWFL11] and [FFGG∗10] leverage GIST features
to extract iconic images, for fast image clustering on a single
commodity PC using GPUs. They also show that the geo-tag
is a good tool for image linkage verification. However, they

may break a connected scene into several separate compo-
nents, which is undesirable in 3D reconstruction.

Current image matching methods focus on the whole
image too much, and ignore the underlying structure of
features, which is of great importance for boosting image
matching, especially when the number of feature points is
considerable. Instead of querying only one nearest neigh-
bor for each feature at a time, we directly extract the whole
matches of this feature from the photo collection. Hence
in this paper, we introduce a feature-oriented dense match
graph construction method which can significantly speed up
the performance of image matching for large photo datasets,
even on a single CPU core.

3. Efficient Match Graph Construction

Given a set of features extracted from the input photo col-
lection, as mentioned in the introduction, our goal of image
matching is equivalent to construct a match graph from the
feature set, as efficiently as we can, with edges linking cor-
responding feature vertices.

To formalize, a match graph is an undirected graph that
can be denoted as Z = (V,E,W ), where v ∈ V is a set of
n vertices in which each vertex v represents a feature point
rather than a single image that needs to be matched, (vi,v j)∈
E is a set of edges connecting related vertices which indicate
these vertices are matches, and W ∈ Rn×n denotes the adja-
cency matrix with the element wi j recording the correspond-
ing weight between the point vi and v j. In the case of image
collections matching, the weight is non-negative and is the
similarity measure between that feature pair, usually in the
simple form of wi j = ‖vi− v j‖. Thus the problem of image
matching is to link V with E according to W .

3.1. Problem reformulation

As for large databases which may contain billions of fea-
tures, we expect to make the construction time of W to be
approximately linear corresponding to the feature number.
This means it would be fine that, for each feature point vvviii,
we could intelligently obtain a candidate set Ci = {vvv jjj} ⊂ V
across the whole set, and determine which elements in Ci
are good matches. However, it is difficult to know in ad-
vance which features are potentially related, since directly
using knn is both inefficient and inaccurate here. In order to
achieve this requirement, we construct an additional graph
G by just comparing each feature to a few selected an-
chor points, where anchor points are a set of landmark sam-
ples sharing the same dimension with image features. Fig.2
shows a comprehensive description about our algorithm.

The object of an anchor-based model is to locally repre-
sent each data point on the manifold in the form of a linear
combination of its nearby anchor points, and see the linear
weights as its local coordinate coding [LHC10]. This notion
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(a) Input feature set (b) Splatting (c) Slicing (d) Output feature correspondences

Figure 2: In large photo collections, it is desirable to find a small number of candidates for each feature to match. To achieve
this target, we first place the whole features into a kd-tree. This makes similar features cluster locally (quadrangles in middle
figures) and be surrounded by a few anchor points (small circles in blue color). Therefore, matching is done by firstly scattering
feature records (as described in section 3.4) into their nearby anchors (splatting), and then gathering at each feature from
corresponding anchors, by combining identical records contained in these anchors, to score the related candidates around it
(slicing), finally returning the all images that contain visual correspondences to current feature.

can be also used in our case. Since similar features are lo-
cally adjacent which are usually bounded by their neighbor-
ing anchors, and the linear weights are a helpful indication of
their similarity. Now we introduce how to use anchor graph
to model our features. Given a feature set of a large image
collection V = {vvv111,vvv222, . . . ,vvvnnn} ⊂ Rd , suppose we addition-
ally have a data set denoted by X = {xxx111,xxx222, . . . ,xxxmmm} ⊂ Rd

with the size of m(m� n), in which each xxxiii acts as an anchor
point. The anchor graph G is a bipartite graph with nodes are
the features V and anchors X . Then the idea is to approxi-
mately reconstruct each feature point in V from anchors of
X as follow:

vvviii =
m

∑
k=1

uikxxxkkk, i = 1, . . . ,n (1)

where U ∈ Rn×m is the weight matrix of G that measures
the relations between V and X with the constraints that, for
each row i of U , ∑

m
k=1 uik = 1 and the element uik ≥ 0.

A key problem for constructing an anchor graph is how
to compute the weight matrix U . As for large-scale feature
sets, it is computationally expensive to optimize a convex
problem for each feature vvviii and impose a heavily computa-
tional overhead on building matrix U . Instead, in some other
applications (e.g., image filtering [CPD07] [ABD10]), the
weights can be estimated based on the distances between
data points. This idea is useful, as it is reasonable to consider
that one feature, in a high probability, tends to be mainly re-
constructed by its neighboring anchors.

Hence similar to [XBC∗11], we simply represent each vvviii
by its k nearby anchors with the weights computed as:

ui j =
H(vvviii,xxx jjj)

∑l∈L〈i〉
H(vvviii,xxxlll)

∀ j ∈ L〈i〉 (2)

where H(vvviii,xxxlll) = exp(−‖vvviii − xxxlll‖2/2δ
2
s ) is the Gaussian

kernel and L〈i〉 ⊂ {1, . . . ,m} is the set saving the indexes of
k nearest anchors of vvviii. Parameter δs determines the size of
the local region upon which each anchor can have an impact.

Assume we have already built an anchor graph, by con-
necting each feature to its k nearest anchors and assigning
the weights according to the Eq.2. Calculating the similarity
between a potentially related feature pair vvviii and vvv jjj is thus
equivalent to compute wi j as follow:

wi j = ‖ ∑
l∈L〈i〉

uilxxxlll− ∑
l′∈L〈 j〉

u jl′xxxlll′‖ s.t.L〈i〉∩L〈 j〉 6= ∅.

(3)

While directly computing the distance may be even more
inefficient, as many additional operations have to be done.
Hence our problem is naturally reformulated into how to
quickly build the anchor graph G, and based on this graph,
how to design a new form of adjacency matrix W to effi-
ciently measure the similarity instead of Eq.3. Next, we will
discuss these two aspects respectively in more detail.

3.2. Anchor graph construction

In order to construct an anchor graph, we should know the
set X of anchor points ahead. How to select a number of
proper anchors from the feature set is a key problem, as it
directly influences our matching accuracy. In our paper, we
identify the anchors by placing the whole features into a sin-
gle Gaussian kd-tree.

The procedure starts from the root cell T which repre-
sents all features in a dataset. To each cell, we compute
the bounding box (the set of minimal and maximal values
for each dimension of features in the cell) and choose its
longest dimension, along which we split halfway a cell into
two child cells adaptively. The feature set is partitioned re-
cursively until each terminal cell (a leaf node) has a diagonal
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length of its bounding box less than the threshold δl . Similar
to [AGDL09] [XL10] [XLX∗14], in each inner node of the
tree we need to store six variables: the cutting dimension θd
and corresponding cutting value θval , the bounding values
θmin and θmax in cutting dimension, and pointers to its chil-
dren θle and θri. Leaf nodes only maintain a data point which
is considered as an anchor point with the same dimension to
features. Each anchor point xxxiii is computed by the mean of
feature descriptors covered in this leaf domain. Hence the
kd-tree has adaptively produced m anchors {xxxiii}m

i=1 one an-
chor per leaf.

For the purpose of matching, for each feature point, be-
sides the feature descriptor, we have to preserve two addi-
tional variables: ηim and η f e which respectively indicate the
image it belongs to and its feature index in this image.

In order to build the anchor graph, we connect each data
point to its k nearest anchors using a Gaussian query by
spilling a set of s querying samples. In each querying, the
samples travel the tree from root to leaves, and recursively
split into two sets where their sizes are determined by a
Gaussian distribution. The Gaussian query quickly returns
at most s results from which we seek the k nearest neighbors
with the weights uik assigned by Eq.2.

The advantage of constructing an anchor graph is obvious.
If two data points (vvviii,vvv jjj) are correlative, they share at least
one common anchor point and the candidates of vvviii can be
regarded as Ci = {vvv jjj ∈V : L〈i〉∩L〈 j〉 6= ∅}, otherwise L〈i〉∩
L〈 j〉 = ∅ and there is no need to match these points.

3.3. Similarity scoring

After constructing an anchor graph, the rest of computational
cost for feature matching is the pairwise similarity metric
measuring between features and their candidates. We present
a new approach to design the adjacency matrix W and make
an intuitive explanation for it.

Naturally with respect to the distribution of features, there
is a useful observation that closer features usually share
more anchor points in common. This gives us two important
implications: For a good feature correspondence, first, the
common anchors should have strong representation power
to them; second, the quantity of anchors in common should
also be large.

Given a feature vvviii and its candidates Ci = {vvv jjj}, let us
define in advance two vectors bbbiii = [uil1 , . . . ,uilk ] and fff jjj =
[u jl1 , . . . ,u jlk ], where ∀lk ∈ L〈i〉 is the anchor indexes of vvviii,
uil ∈ U . Then we compute the similarity score of a feature
pair (vvviii,vvv jjj) as:

wi j = (111 · fff T
jjj )

α N
k
∀ j ∈Ci. (4)

The first term (111 · fff T
jjj )

α of Eq.4 indicates the represen-
tation power of common anchors, with a factor α ∈ [0,1]

(a) Anchor graph (b) Blurring

Figure 3: (a) A anchor graph with three nearby features
bounded by different anchor points. (b) The blurring step
which gathers records at each anchor from nearby ones.

controlling the effect of this term. We have already known
that 111 · bbbT

iii = 1, if (vvviii,vvv jjj) is adjacent, it is reasonable to ex-
pect 111 · fff T

jjj also has a high value close to 1. While directly
leveraging this term is noisy, thus we import an additional
term N/k, where the variable N = |L〈i〉∩L〈 j〉| is the amount
of shared anchor indexes. If α = 1, the score is collectively
determined by these two terms, otherwise the second term
plays a more important role. This formula favors those can-
didates with the high weight and large number of anchors in
common to current feature vvviii.

We now obtain a score that captures the intuition about
what makes a pair of features matched or not. This measure
naturally preserves two-fold properties of W . First, the re-
lationship between two data is always nonnegative. If they
are related, the value 0 < w ≤ 1, otherwise w = 0. Second,
the highly sparse matrix U also makes W sparse. This is
particularly meaningful, since each feature only needs to be
compared to a small number of related candidates subject to
L〈i〉∩L〈 j〉 6= ∅.

3.4. Algorithm for feature-oriented correspondence

Now we describe our full pipeline driven by the above anal-
ysis. Our algorithm begins by running a standard feature de-
tection (SIFT [Low04] is used in our paper) to generate a set
of feature points. Since kd-tree performs poorly at dimen-
sion above 50, we reduce the feature dimension to d = 24.
After that, we build a Gaussian kd-tree and regard the pro-
duced leaves as anchor points. Then each feature scatters its
record which contains the ηim, η f e and weight u into k near-
est anchors to construct an anchor graph (splatting).

However, in some cases, an additional issue may arise.
Looking more closely at a simple anchor graph as shown
in Fig.3(a). Suppose there are three nearby features denoted
by A, B and C. While after splatting, they are represented
by different anchors, where point A and B share two com-
mon anchors, as do B and C, but A and C have only one.
In this situation, the similarity score between feature pair
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Table 1: Performance statistics of our algorithm tested on four different photo collections using a single CPU core.

Dataset #images #features #anchors
Time (hr)

splatting blurring slicing

Louvre 5,494 60,130,581 38,506,745 11 7 1.5

St. Peter’s 1,468 10,946,425 5,728,071 1.2 0.7 0.2

Colosseum 1,164 26,429,139 18,064,027 3.6 2.7 0.8

NotreDame 841 8,765,236 5,048,493 0.9 0.6 0.2

(A,C) estimated from Eq.4 would be very low, even though
these points are mutually nearby. This is because the dis-
tribution of anchors is uneven and parameter δl or k is too
small, which lead to redundant anchors around some feature
clusters.

To remedy this problem, we introduce an additional step
before scoring, where we smooth the initial anchor graph
(blurring). As shown in Fig.3(b), it is easy to discover that
the anchor points used to represent A, B and C are also close
to each other. This reminds us neighboring anchors should
also have an impact on current anchor. Based on the obser-
vation, we define another graph G∗ which is an extended
version of G. Since the anchor points are the leaves of tree
T , we query the neighboring leaves for each anchor within
the scope of δb, and compute the new weight matrix U∗

by merging the corresponding records included in those se-
lected anchors. If the records with ηim and η f e have already
existed in current anchor, there is nothing we need to do, oth-
erwise we insert the records with a new weight u∗ = g× u,
where g is a Gaussian weight decided by δb as well. The
merging operations are efficient as the records contained in
each anchors are ordered by ηim and η f e.

By doing so, nearby anchors could propagate their records
to each others. However, this step is optional. As in most ap-
plications, the splatting – slicing scheme provides sufficient
accuracy as discussed in section 4.2.

After blurring, we gather records at each feature point
from its k nearest anchors by accumulating the weight u with
identical ηim and η f e according to Eq.4 (slicing). For images
labeled with different ηim to current matching feature, if the
η f e with largest u and the one with second largest u′ satisfy
u−u′ > δm, where δm is a threshold, then we regard the fea-
ture η f e contained in image ηim is a good correspondence to
current matching feature.

When the image collection is very large, we find that sav-
ing the whole feature set and corresponding anchor graph
simultaneously in RAM is memory-consuming. In our ex-
periments, for this situation, we commence splatting with
dividing the image set into multiple parts, and operate sin-
gle part at each time in following steps, then save the middle
outputs to files in an out-of-core manner with a relatively
small amount of the I/O budget.

3.5. Complexity analysis

In this subsection, we make a complexity analysis for our al-
gorithm in detail, including the computation cost and storage
cost. As feature points are our basic unit, thus the algorithm
complexity is based on the size of feature points instead of
images.

Given an image collection with n d-dimensional feature
points, we first intelligently select m anchor points in a kd-
tree. At each level of the tree, we need to process O(n)
nodes and do O(d) comparisons per node. Since a kd-
tree is approximately balanced, it is reasonable to expect
a depth about O(logm). Therefore the anchor selection re-
quires O(nd logm) time. Then we do a Gaussian query for
the n input feature points to respectively scatter its records
into k nearest leaf nodes. A Gaussian query takes a runtime
about O(s(logm + d)), and thus the splatting step spends
O(ns(logm + d) + k2ns) time. Here, we have to store the
whole feature sets in memory which cost O(dn) storage.

In the blurring step, we blur each leaf node from its
neighboring anchor points involving a Gaussian query and
some merging operations. The merging process has a run-
time about O(kn/m). So the computational cost of this step
can be bounded by O(ms(logm+ d) + kn). Finally we as-
semble the records for each feature from corresponding an-
chor points to obtain matching results. This slicing step only
requires I/O and merging operations with a time complexity
of O(kn/m). Generally processing these two steps theoret-
ically requires us to store an anchor graph whose memory
cost is at the level of O(kn).

Consequently, as analysed above, the total computation
complexity of our algorithm is O(logm(nd + ns + ms) +
n(sd + k2s+ k + k/m) +msd). While we have known that
m < n,k = 5,d = 128 for SIFT descriptor, and s is a con-
stant used for Gaussian querying which usually s < 256.
This makes our time complexity be mainly decided by the
first term, and results in a simplified expression of time com-
plexity in O(n logn). As we expect, this bound shows an ap-
proximately linear relationship corresponding to the sizes of
feature sets.

With regard to the storage complexity, the most memory-
consuming step of our algorithm is reading all features for
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Table 2: A statistics of accuracy performance of our algorithm.

Dataset
MA10

Our method
δl = 0.6 δl = 2.0 without blurring

MG MT MI Prec MT MI Prec MT MI Prec
Louvre 2,475 2,423 2,289 0.94 2,708 1,758 0.65 2,342 2,117 0.90

NotreDame 1,534 1,511 1,426 0.94 1,966 1,173 0.60 1,469 1,301 0.89

constructing a Gaussian kd-tree which requires O(dn) stor-
age; since in following steps, neither the whole feature set
nor anchor graph is fully required in RAM. This results in a
storage complexity of O(dn).

4. Experiments

In this section, we evaluate the efficiency and accuracy of our
algorithm on several image collections collected from Flickr.
Their sizes are varied from hundreds to thousands and some
are summarized in Table 1. Each collection corresponds to
a popular landmark with a large disparity in the number of
images that capture different parts of a scene. In addition,
these datasets also contain some noisy images which have
no meaning to the landmark structures, such as a close-up of
baby faces or cute dogs. The timings recorded in this paper
exclude the cost for SIFT extraction.

4.1. Efficiency Evaluation

Here we would like to answer how efficient our algorithm
is in processing image collections matching. There are six
parameters used in our algorithm. We find the values α =
0.7,k = 5,δs = 0.6,δl = 0.6,δb = 0.4 and δm = 0.3, which
achieve good performance in our experiments.

We first investigate the efficiency performance of our al-
gorithm tested on single processing core. The timings are
obtained on a normal PC with quad-core Xeon E3 3.3 GHz
processor and 32GB RAM. Table 1 summarizes the typical
running time of each step of our algorithm performed on four
different scale datasets. Given a feature set large as Louvre,
our approach constructs its dense match graph just in one
day including the overhead of I/O and PCA processes.

The threshold δl directly determines the number of an-
chor points produced in our paper. Large value of δl leads
to a small amount of anchor points. Although decreasing an-
chors in size can facilitate the querying operations in splat-
ting, it also causes each anchor linking more features, and
consequently increases the merging cost invested in blurring
and slicing. Moreover, large δl reduces our accuracy of im-
age matching as well, since there would be more than one
cluster locally bounded by the same anchor points and the
features in these clusters would obtain too ambiguous scores
to distinguish from each others. On the other hand, if δl is too
small, most features would individually become leaf nodes.
This makes our algorithm be reduced to normal k-nn manner.
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Figure 4: (a)Computational time comparisons according to
different feature sizes on single core. (b)Performance com-
parisons on the cluster.

From experiments we find δl = 0.6 (when d = 24) is a proper
choice in our test sets, which also tells us if the distance of
two features is much larger than 0.6, then the probability to
be matches becomes very low.

Fig.4(a) shows some comparisons between our approach
and recent state-of-the-art methods ( [MA10], [ASS∗09],
and [SBBF12]). The comparisons are examined without
any distributed optimization or GPU technique. As for
[ASS∗09], we train a vocabulary tree with the branching fac-
tor 10 from St. Peter’s. For [SBBF12], we first use the vo-
cabulary tree to find similar images, and then adopt its LAD-
Hash model for fast ANN searching. Datasets used here in-
clude two additional image collections – St. Pauls and Pan-
theon respectively with image sizes 121 and 356. As shown
in Fig.4(a), our feature-oriented matching scheme achieves
significantly speedup compared to these three methods, and
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performs well even if the collection is small-scale. It is also
visible that the total computational time of our algorithm is
more approximately linear to the sizes of feature sets.

To see the performance in parallel processing, we also im-
plement a distributed version of [ASS∗09] on a cluster with
6 nodes. Each node in the cluster has 2 12-core Xeon pro-
cessors running at 2.2 GHz with 128 GB memory. Our al-
gorithm can also be parallelized. A worker node first builds
the Gaussian kd-tree and writes the structure into common
storage device, then manager node averagely issues a set of
images to worker nodes which separately execute our splat-
ting and blurring stages. Before slicing a worker need to
combine the separate anchor graphs produced by different
workers, after that the slicing goes on. The tests are carried
out on the four datasets summarized in Table 1. As shown
in Fig.4(b), our method also exhibits better outperformance
than [ASS∗09] on cloud. These experiments demonstrate
that our method is very efficient at finding feature correspon-
dences from image collections.

4.2. Accuracy Evaluation

Evaluating the accuracy of feature matching is a difficult
task, since there is no benchmark indicating which feature
pairs are correct correspondences. Noisy is still remaining,
even if carried out through exhaustive matching. In order to
evaluate the accuracy of our algorithm, we define a simple
form of matching precision that Prec = MI/MT . Denomina-
tor MT is the size of set ST (the feature pairs produced in our
proposed algorithm from a given image set). MI = |ST ∩SG|,
where SG represents the ground truth set generated by ex-
haustive matching [MA10] and MG = |SG|. However, in
large photo collections, there usually contain millions of fea-
ture correspondences which are intractable to perform such
accuracy estimation. Hence, instead of evaluating a whole
dataset, we investigate the matching results of three overlap-
ping images randomly chosen from NotreDame and Lou-
vre. Moreover, to understand how much blurring improves
the accuracy, we also make a comparison to the implemen-
tation without this step.

Table 2 summarizes the detailed accuracy statistics results
of our approach following different schemes. As analyzed
above, the selection of parameter δl is very important to the
effectiveness of our algorithm, as larger δl may more easily
lead to ambiguous similarity scores. When δl is close to 0.6
(when d = 24), our algorithm performs well in these image
collections and produces highly precise feature correspon-
dences similar to [MA10]. Additionally it is also obvious to
see that, the blurring step brings at least 5% accuracy im-
provement. For those applications that matching accuracy is
a primary requirement , the blurring is recommended. While
for the datasets used in our experiments, the algorithm is also
competent to produce satisfactory results without blurring.

In 3D reconstruction, image matching is a central ele-
ment, as each feature linkage across different photos may

potentially correspond to a spatial point. Hence, the number
of point clouds generated through Structure-from-Motion
(SfM) [SSS06], to some extent, represents the accuracy of
visual connection as well. Such reconstructed points statis-
tics of three matching methods are summarized in Table 3 for
comparison. It is visible that, with regard to different photo
collections, our algorithm could always maintain at an ap-
proximate level with [MA10], considering the amount of 3D
point clouds produced by SfM, while requires a shorter pe-
riod of computational time. We also show some 3D recon-
struction results in section 5 in detail.
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Figure 5: Matching precision versus different values of pa-
rameter k.

Fig.5 shows the performance of our algorithm at different
values of k. Note that the precision is not sensitive to the se-
lection of k when k > 5. With small k, we can guarantee the
matrix U highly sparse, which could decrease our computa-
tion and memory consumption.

5. Application

In this section, we show 3D reconstruction results from large
photo collections (NotreDame and Louvre) accelerated by
our feature-oriented matching method. We begin with per-
forming detailed SIFT detection on each image of a given
set. Then this application requires a graph structure to be
made to indicate feature correspondences between image
pairs. Our algorithm provides this structure, for each feature,
by directly finding all its matches from the whole set in an
efficient way. In theory, a feature and its all correspondences
form a track which reflects the same 3D point mapped into
multiple 2D images. However, similar to other image match-
ing method, the noise correspondences may also exist in our
method, where a geometrically consistent verification is re-
quired for every overlapping image pair. Fig.6 exhibits two
feature correspondence results across multiple images which
are selected through our pipeline.

Given the tracks, we first identify a sparse skeleton of the
whole scene related to the one in [SSS08], and reconstruct it
with an incremental bundle adjustment algorithm [SSS06].
Then the remaining images are hung onto this reconstructed
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Table 3: The comparison of reconstruction performance of three matching algorithms.

Datasets
MA10 ASS*09 Ours

#Feature
Matches

#Point
Clouds

#Feature
Matches

#Point
Clouds

#Feature
Matches

#Point
Clouds

St. Peter’s 12.7M 249,112 12.5M 245,065 12.5M 238,784
Colosseum 13.2M 321,731 12.7M 311,121 12.8M 307,691
NotreDame 7.5M 231,907 6.7M 210,267 7.2M 218,596

(a) NotreDame

(b) Louvre

Figure 6: Two feature correspondence results (the small
squares in these pictures) in NotreDame and Louvre
datasets. The black square is a noisy linkage which would
be filtered in the geometrically consistent verification.

skeleton. Although our image matching algorithm may bring
in a few erroneous links compared to ground truth using
[MA10], it is sufficient to obtain an approximate 3D model
with more than ten times faster. Fig.7 shows the resulting
point clouds of two landmark scenes which are respectively
reconstructed from NotreDame and Louvre based on our
match graph construction algorithm.

6. Conclusions and Future Work

In this paper, we have presented an efficient match graph
construction algorithm for large image collections. We di-
rectly put the feature points into a single kd-tree and intel-
ligently compare each feature to a small number of related
candidates drawing support from an anchor graph. We also
have shown that this method can significantly speed up the
performance of image matching in different photo collec-
tions by up to one to two orders of magnitude, with little
loss in accuracy.

The method we have described does have limitations. Al-
though the proposed image matching avenue is very effec-
tive and efficient, this model is not very memory-efficient
and completely sound in theory. Thus it might be fruitful to
incorporate more sophisticated ideas from lattice and man-
ifold to design more robust approaches. In addition, our

(a) NotreDame

(b) Louvre

Figure 7: 3D reconstruction results (NotreDame and
Louvre) accelerated through our feature-oriented matching
scheme.

method is also unable to distinguish ambiguous correspon-
dences inferred from repeated structures. In future work, it
would be interesting to extend our model to disambiguate
duplicate scenes.
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