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Abstract

A major challenge in feature matching is the lack of objective criteria to determine corresponding points. Recent methods find

match candidates first by exploring the proximity in descriptor space, and then rely on a ratio-test strategy to determine final

correspondences. However, these measurements are heuristic and subjectively excludes massive true positive correspondences

that should be matched. In this paper, we propose a novel feature matching algorithm for image collections, which is capable

of providing quantitative depiction to the plausibility of feature matches. We achieve this by exploring the epipolar consistency

between feature points and their potential correspondences, and reformulate feature matching as an optimization problem in

which the overall geometric inconsistency across the entire image set ought to be minimized. We derive the solution of the

optimization problem in a simple linear iterative manner, where a k-means-type approach is designed to automatically generate

consistent feature clusters. Experiments show that our method produces precise correspondences on a variety of image sets and

retrieves many matches that are subjectively rejected by recent methods. We also demonstrate the usefulness of the framework

in structure from motion task for denser point cloud reconstruction.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Computational photography—; I.4.0

[Computer Graphics]: General—; I.4.7 [Computer Graphics]: Feature Measurement—;

1. Introduction

Establishing feature correspondences from image collections is one

of the most fundamental problems in computer graphics and vision

communities. Such associated connections indicate the visibility of

3D points in 2D images and form the basis for many applications,

including photo ordering [AECO15], object modeling [IBP15] and

image navigation [CDSHD13]. On the other hand, identifying fea-

ture correspondences is also a challenging problem, as there is no

criteria so far that could objectively measure a correspondence is

spurious or plausible. In this paper, we try to quantize the correct-

ness of feature correspondences within image collections and use

this metric to augment our matching performance.

A typical strategy, for correspondence measuring, is to compare

the associated descriptor between features in the Euclidean distance

and choose the closest feature in the target image as a visual cor-

respondence. However, this measurement is inaccurate. It improp-

erly associates each feature with a correspondence, and leads to a

surge of false positive matches accordingly. Hence, in order to ob-

tain more acceptable results, recent matching methods [SBBF12,

YXX14, CLW∗14], which differ in nearest neighbor (NN) search,

commonly employ a 2-NN ratio-test strategy [Low04] to measure

matches. This strategy heuristically defines that the matching prob-

ability can be approximated by the distance ratio of a query feature

between its nearest neighbor and its second nearest neighbor. The

underlying assumption is that a good correspondence usually has

significant descriptor discrimination against the others.

There are two main deficiencies to these approaches. First, due

to viewpoint changes, the closest feature in descriptor space may

not be the true match. Another point in proximity with less simi-

larity may be the right one. Second, the ratio-test criteria is easily

interfered by repeated patterns in the image content, where its as-

sumption would be violated. It punitively rejects many true posi-

tive matches in such repeated regions, as shown in Fig. 1, due to

the indistinguishable distribution in descriptor space. In 3D recon-

struction applications, such as structure from motion (SfM), this

usually results in very sparse point clouds. In this respect the re-

sults demonstrated by recent feature matching systems are still less

impressive.

In order to achieve desired feature matches, the key technical

challenge is that of designing meaningful criteria which can quan-

titatively measure the plausibility of each feature correspondence.

Yet, few approaches exist that attempt to tackle this problem. Com-

paring feature descriptors is not sufficiently meaningful to indicate

a good match. Therefore, in practical applications, a pairwise ge-
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Figure 1: An example of punitive rejection. The two input images (left column) show the structural detail of Arc de Triomphe in Paris. Due to

the repetition in carving patterns, the visual similarity of features in these regions are indistinctive. This leads to high distance ratios in the

ratio-test and many true matches are thus punitively excluded (middle column: 193 matches using [MA10] followed by RANSAC [FB81]) as

compared to our method (right column: 396 matches). Matching points are marked with disks of the same color.

ometric verification step is usually imposed. Such geometric re-

lationship constrains the possible motion of corresponding points

transferred from one image to another and is an effective way to

filter outliers, as they are frequently inconsistent according to view-

point transformation. A seminal example is the epipolar geometry

(e.g. fundamental matrix [HZ03]) using RANSAC [FB81]. How-

ever, recent methods mainly consider this metric as a supplemen-

tary post-process to feature matching which would further reduce

the number of output correspondences.

In this paper, we consider the problem of designing quantita-

tive criteria for feature matching. As the main contribution, we

propose a novel geometrically-based approach for reliable feature

correspondence in image collections, which overcomes the two de-

ficiencies suffered by recent methods. We argue that the epipolar

geometry suffices to quantize feature matching when analyzed in a

more holistic fashion. That is, instead of matching locally for each

image pair, we consider feature points of the whole image collec-

tion together. We first demonstrate how the epipolar constraint is

able to quantitatively depict the correctness of feature correspon-

dences. Based on the measure, we then cast feature matching as

an optimization problem and propose a novel objective function to

evaluate the overall quality of feature correspondences. Finally, we

solve the optimization problem in a linear iteration manner, where

a geometrically guided k-means approach is employed to automati-

cally cluster visually closing and geometrically consistent features.

In this article we focus on matching static feature points. We

evaluate the presented approach on different types of datasets and

show superiority in quality and quantity to recent feature matching

methods. Additionally, we also integrate our algorithm into a typ-

ical SfM pipeline for match graph construction. Using this infor-

mation, we succeed to recover denser 3D details that are otherwise

difficult to achieve.

2. Related Work

Feature matching is important for many applications. There have

been a great deal of literatures on improving the efficiency of fea-

ture correspondence. However, rare work are working towards the

direction of investigating more meaningful criteria, instead of the

ratio-test, to improve matching performance. In this section, we

first revisit prior efforts on fast nearest neighbor search and match

graph construction in the context of large-scale image collections.

Then we discuss the relevant techniques that are commonly used to

densify SfM point clouds.

Nearest neighbor search In order to find feature matches, the near-

est neighbor in descriptor space is usually required. For a query

feature, the brute-force approach exhaustively compares distances

with all features in the target image to find the nearest neighbor.

With the purpose of improving efficiency, tree-based approximate

nearest neighbor (ANN) methods, such as ANN Libary [MA10]

and FLANN [ML14], are usually adopted in practice. These meth-

ods organize target features into a kd-tree and dramatically de-

crease the comparisons for each query. As an alternative, hashing-

based ANN algorithms [SBBF12, CLW∗14] recently have also

been used in feature matching. These methods convert feature de-

scriptors into bit codes and conduct a bitwise operation for fast

similarity comparison. Shah et al. [SSN15] introduce an interest-

ing geometry-aware algorithm which constrains the NN search,

for each feature, in a very limited scope (i.e., along the epipo-

lar line) in order to refine their matching accuracy and efficiency.

All these work are mainly designed for fast nearest neighbor

search. In order to measure matches, the heuristic 2-NN test strat-

egy [Low04] is usually imposed afterward. However, as previously

discussed, the nearest neighbor may not be the right match candi-

date in some cases, and the ratio-test would also punitively exclude

many positive matches that should be matched. In contrast, Zhang

and Kosecka [ZK06] propose a generalized RANSAC framework

for correspondence establishing. While it takes multiple candidate

matches into account and can avoid the early commitment to the

nearest one in descriptor space, more true positive matches risk re-

jection in the robust estimation stage.

Large-scale image matching For datasets with thousands of pho-

tos, directly matching all possible image pairs via ANN mod-

els is intractable. In fact, most of images in a collection observe

completely different scenes, thus a large portion of comparisons

can be saved if exclude matching these irrelevant image pairs.

There are various work built upon this observation. Agarwal et

al. [ASS∗09] integrate the Bag-of-Visual-Word model [NS06] into

a distributed SfM system for overlapping images mining. Frahm et

al. [FFGG∗10] leverage GIST descriptors [OT01] to cluster sim-
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ilar images and achieve large-scale match graph construction on

a single PC using GPUs. Lou et al. [LSG12] design an algorithm

exploiting connectivity in image collections and incorporate both

relevance feedback and entropy minimization to improve retrieval

quality over time. Kim et al. [KTT∗12] reformulate the matching

process as a linkage prediction problem. They first approximate the

match graph with a very sparse graph, then iteratively increase its

potential edges by spectral analysis.

Most recently, Changchang Wu [Wu13] introduces a preemp-

tive matching algorithm by testing a few features with top-scale

values to decide whether this image pair should be fully matched.

Havlena and Schindler [HS14] show that, given a huge visual vo-

cabulary, the problem of feature matching can be approached by

image indexing. Such unique index words enable them to directly

establish feature correspondences across all images instead of test-

ing every individual pair. Yan et al. [YXX14] argue that while

overlapping images contain certain correspondences, most features

between them still remain unmatched. Thus instead of retrieving

similar images, they present a feature-oriented matching algorithm

which intelligently finds a small portion of related candidates for

each feature to match. Schonberger et al. [SBF15] develop a new

approach for quick overlap prediction. They infer the viewpoint re-

lationship of pairwise images by means of encoding location and

orientation properties of local features. There is also a work [TL09]

which predicts the matchability of individual features and rejects

non-matchable ones.

These methods are mainly designed for the purpose of efficiency

improvement. Therefore, they also suffer from the preemptive com-

mitment to the nearest neighbor and the impact of punitive rejec-

tion. In contrast, we investigate a different perspective, i.e., improv-

ing the matching accuracy. Instead of processing in pairwise man-

ner, the proposed approach relies on the “wisdom of crowd”, which

analyzes the geometric consistency of features over an image col-

lection. With this informative metric, not only can we filter outliers

and establish precise feature correspondences, but also find more

matches between images that are subjectively discarded by ratio-

based methods.

Dense reconstruction Structure from motion (SfM) recently is

one of the most popular techniques for 3D acquisition. However,

a general deficiency to this technique is the sparseness of its out-

put point clouds. This can be attributed to two reasons: first, lo-

cal features are much fewer as compared to image pixels, and

second, many true positive correspondences are incorrectly elimi-

nated in feature matching. Thus in order to generate denser results,

multi-view stereo (MVS) methods [FP10, GSC∗07], which serve

as a post-processing step to SfM, are usually utilized. For further

enhancement, Shan et al. [SCF∗14] incorporate image silhouette

information into an MVS method and estimate a corresponding

depth map using MRF to augment point sets around object bound-

aries. Chaurasia et al. [CDSHD13] use superpixels to interpolate

the depth value of non-reconstructed pixels for more complete 3D

geometry outputs. The focus of these approaches is to densify point

clouds after SfM rather than increase feature matches before SfM.

In this paper, we do not attempt to solve this specific problem posed

by SfM. Instead, we would like to show that our matching algo-

rithm can facilitate SfM to produce much denser geometries as

compared to other matching methods.

3. Approach

We first introduce some notations for easy illustration. Formally, we

are given a set of images I = {I1, ..., IZ} and the associated feature

points Pi = {Pi
1, ...,P

i
Mi
} to each image Ii. For each feature point

Pi
m (1 ≤ m ≤ Mi), it can be expressed in the form Pi

m = (xi
m,d

i
m),

where xi
m ∈ R

2 indicates the spatial location of feature Pi
m in its

image plane, and di
m ∈ R

D denotes its appearance descriptor, D is

the dimensionality of the descriptor vector. Here, we make use of

the SIFT [Low04] as our experimental element, where D is 128.

Notice that the number of features in each image may be different.

We use Mi to record the number in the i-th image.

Our goal in this work is to establish precise and complete feature-

wise correspondences. The key challenge for this problem is how

to design the matching criteria which is capable of measuring the

quality of feature correspondences quantitatively. We approach this

by integrating the geometric constraint into correspondence search

and analyzing it in a more holistic fashion (rather than conducting

on each image pair as a post-process). Typically, a putative feature

match should correspond to the same 3D point, thus the matching

quality of feature Pi
m and P

j
n between two images Ii, I j can be val-

idated and augmented with the geometric relationship of multiple

additional images which also observe this physical point. That is,

even when Pi
m and P

j
n do not have sufficient feature similarity di-

rectly, there may be sufficient indirect evidence from their geomet-

ric transformations between other images supporting their match.

We first describe our matching criteria in detail in Sec. 3.1. Then

we formulate this metric into an optimization problem and provide

a linear iterative clustering method to minimize this objective re-

spectively in Sec. 3.2 and Sec. 3.3.

3.1. Epipolar Consistency

Besides of delivering visual information, pictures also reveal the

geometric relationship of viewpoint changes. Epipolar geometry is

a commonly used technique in image matching systems for outlier

filtering. It constrains the possible transformation of corresponding

feature points in an image pair. To formulate, given two images

Ii and I j , the epipolar constraint defines that if Pi
m in Ii and P

j
n in

I j are corresponding points, then they should satisfy the following

equation:

x
iT
m ·Fi j ·x

j
n = 0, (1)

where Fi j is the 3× 3 fundamental matrix [HZ03] between Ii and

I j, T denotes the transpose operation. In other words, this equation

also implies that if P
j

n has a correspondence Pi
m in image Ii, then

this associated point must lie on the epipolar line ln = Fi jx
j
n cor-

responding to the point P
j

n ; otherwise, it is an outlier. Accordingly,

for Pi
m, this constraint also holds.

It is important to note that such geometric cue actually offers us

a necessary condition for points to correspond. However, with only

two images, the epipolar constraint is insufficient to exactly locate
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Figure 2: Illustration of the epipolar consistency. C1, C2 and C3 denote three camera centers. P1, P2 and P3 represent different feature points

in these cameras. (a) The plane passing through C1, C2 and P2 forms an epipolar line in camera C1. (b) With another image, a second line

can be computed in camera C1 from plane C1C3P3. If P1, P2 and P3 are corresponding points and epipolar consistent, the intersection point

must be P1.

the matching point for a given feature P. The other points that lie

on the line l = Fx also satisfy above relation.

Therefore, instead of analyzing locally within a single pair, we

explore the epipolar constraint over the whole dataset. Suppose

there is another image Is. If this image also has a match Ps
t with

P
j

n , then Ps
t and Pi

m should be a correspondence as well (i.e., loop-

closure constraint). According to Eq. 1, we can get another line

lt = Fisx
s
t in image Ii, and it intersects with ln. Due to the fact that

two coplanar lines only determine a point, in theory, if P
j

n , Ps
t are

correct matches to Pi
m, the intersection point of their epipolar lines

must be Pi
m. That is,

x
iT
m · ln +x

iT
m · lt = 0. (2)

Fig. 2 shows a visual illustration for this observation. It likewise

holds true in the other two images. A similar property was also

illustrated in [HZ03] on trifocal tensors.

With the growing of available images in the dataset, there would

be more and more epipolar lines converging on a single point, if

they all associate to a common correspondence. Using this metric,

we hence are able to locate the unique matching point and quanti-

tatively validate the plausibility to its other corresponding points.

Here we name the consistent epipolar relationship between a fea-

ture and its corresponding points over a dataset as epipolar consis-

tency. Normally, due to the diversity of viewpoints in image collec-

tions, the overlap of all epipolar lines is rarely happened, unless all

images in the dataset are captured from the same perspective. This

ensures the practicability of the proposed criteria.

3.2. Matching Objective

Intuitively, feature matching can then be formulated into a cluster-

ing problem in which feature points are intelligently grouped into

a series of clusters. Each cluster represents a collection of corre-

sponding points in different photos that satisfy the epipolar consis-

tency criteria. Yet, due to inaccuracies in calculation, it is difficult

to strictly restrict the constraint to be xT · l = 0. Instead, we ex-

pect the global epipolar inconsistency computed over all clusters

as small as possible. Given the above stated goals, we thus reach

the following objective function for our matching problem, which

needs to be minimized:

EG =
K

∑
k=1

∑
Pi

m∈Ck

∑
P

j
n∈Ck ,i 6= j

x
iT
m · ln, (3)

where ln = Fi jx
j
n (Fi j 6= 0), K is the number of desired clusters,

Ck denotes the feature set in the k-th cluster. The selection of K is

important to our algorithm. We will discuss it in Sec. 3.3.

The objective function is intuitive. The term f (Pi
m) =

∑P
j

n∈Ck ,i 6= j
xiT

m · ln tries to compute the epipolar inconsistency of

feature Pi
m within cluster Ck, and EG expresses the global incon-

sistency residual over all clusters. Ideally, for correct feature corre-

spondences, this residual should be zero (EG = 0). In real data, it is

often a small positive value because of the imperfect image registra-

tion. In comparison, feature clusters with spurious image matches

will result in a large positive EG. Thus, intuitively, the global mini-

mum of Eq. 3 should correspond to a correct feature matching.

3.3. Optimization

We now get an objective function that captures our intuition about

what makes a correspondence plausible or spurious. The rest of our

concern is thus on how to minimize it. It is easy to note that Eq. 3

looks like a classical k-means model, which can be optimized by

a predesigned value for the cluster number K and an iterative clus-

tering algorithm (alternatively assigning and updating). Our opti-

mization scheme derives from the normal k-means algorithm but

with some modifications: the whole process is automatic (includ-

ing the selection of parameter K) and requires two phases. The first

phase involves the computation of adaptively cluster partitioning

and feature clustering in descriptor space. In the next phase, ini-

tially clustered features are adjusted, according to their epipolar in-
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Figure 3: The overview of our optimization procedure. Features are represented by disks in different colors, where the same color means

correspondences. At first, all features are randomly distributed. With the kd-tree partitioning and k-means clustering, relevant features are

gradually grouped together. However, these processes are insufficient to obtain putative correspondences. Hence next, geometric constraints

are considered in the iteration, where each feature is arranged into the group that causes the minimal epipolar inconsistency.

consistency within clusters, in order to minimize the global incon-

sistency. Fig. 3 shows a brief overview of the optimization pipeline.

Descriptor clustering phase A key problem for minimizing the

objective function is how to know the K of cluster centers ahead.

The number of clusters directly influences the matching accuracy.

Yet, assigning the parameter manually is empirical and inaccurate.

Excessive partitions usually lead to undesired separation of feature

correspondences. On the contrary, inadequate cluster centers would

cause many features incorrectly assembled. To address the issue,

we employ a strategy by means of kd-tree partitioning [AGDL09,

XL10] to adaptively form the initial centers. Our partitioning builds

on the following intuition: the features originating from the same

image must belong to different clusters, as they actually reflect the

projection of two distinct 3D points.

To automatically return a list of cluster centers, we first place the

entire features into a kd-tree. For each feature point, in addition to

the spatial coordinate x and feature descriptor d, we also preserve

two additional variables in this step: him and h f e which respectively

represent the image it belongs to and its feature index in this image.

In each cell, we first validate whether there are features originating

from the same image, i.e., with the same him. If all features in this

cell possessing different image indices, then we regard it as a ter-

minal cell (a leaf node) and assign a center point being the mean

vector of feature descriptors covered in this leaf domain. Other-

wise, we split the cell into two child cells. The partitioning starts

from the root cell of the kd-tree which contains all features in the

dataset and recursively proceeds until all cells are leaf nodes.

By this mean, the kd-tree has adaptively produced K clusters,

one cluster per leaf. The partitioning is conducted in descrip-

tor space. It subdivides finely in the space in which distinct fea-

tures from the same image distribute intensively, while subdividing

coarsely in the region where the distribution is sparse. Each leaf

node contains the grouped features and an associated cluster center

with the same dimensionality.

Once the partitioning is achieved, we then perform a classical k-

means clustering in descriptor space to improve the grouped result.

However, there is a useful adaptation. In the conventional k-means

algorithm, distances are computed from each cluster center to ev-

ery element in the dataset. In contrast, we only compute distances

from each cluster center to features within a limited distance scope,

like [ASS∗12]. This is based on the observation that features far

from the center have less chance to be assembled into the group,

so comparing distances between them is unnecessary. In order to

confine the search space, we associate each cluster to its NC nearest

neighboring clusters by using a Gaussian search [AGDL09]. After-

ward, each cluster center only needs to compare with features of its

NC neighboring clusters. This reduces the complexity of clustering

process to be linear in the number of candidates NC rather than the

number of clusters K, and results in a significant speed advantage

over conventional k-means method. In practice we found that when

NC > 10, the performance did not improve too much.

The modified k-means process in descriptor space is important

to our optimization pipeline. First, it forms an initialization for the

following geometry adjustment phase, which reduces the interfer-

ence from distant outliers and enables our iteration converge more

efficiently. Second, it provides a feasible way to compute the pair-

wise epipolar geometry, i.e., fundamental matrix, without known

final matches.

Since our optimization relies on epipolar constraint, yet esti-

mating epipolar geometry also requires feature matches. Hence it

seems this is a chicken-and-egg problem. We overcome this prob-

lem by selecting a few high-confidence matches from the grouped

clusters. If the distance L1 from one feature to its cluster center is

much less than the distance L2 to the second closest center (here we
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quantize the disparity in the form of L1
L2 < 0.6), then we consider the

feature is well represented by this cluster, and all well represented

features in this cluster mutually are high-confidence matches. That

is, in this case, the descriptor similarity is relatively reliable to indi-

cate a match because of the distinctive clustering boundary (similar

to the matching assumption of conventional method [Low04]). As

an alternative, it is also feasible to select high-confidence matches

using a small portion of top-scale features in each image, as il-

lustrated in [Wu13, SSN15]. However, this method may lose some

important correspondences between weakly overlapping images.

Afterward, with a few high-confidence matches between an im-

age pair (Ii, I j) (at least 16 matches), we use the 8-point algo-

rithm [HZ03] and RANSAC [FB81] to estimate the fundamental

matrix. If the image pair does not have sufficient initial matches,

we consider they are irrelevant. Then we will not compute geomet-

ric constrains between feature points in such pairs in the following

phase.

Geometry adjustment phase In this stage, we have to reana-

lyze the allocation of each feature and arrange it into the clus-

ter which causes the minimal increasing of epipolar inconsistency.

Once again, we leverage the k-means algorithm but with two im-

portant distinctions:

• A distance measure evaluates the epipolar inconsistency in-

stead of descriptor similarity. This requires computing the

residual as defined by u = xT · l.
• The cluster center is no longer a mean vector. Instead, two

canonical features in this cluster are adopted.

Hence, in this phase, feature descriptors are no longer required,

instead, the coordinates of features in image plane are leveraged.

That means much CPU memory can be released.

Our iterative procedure begins with a pre-processing step where

the K initial cluster centers produced in the former phase are re-

placed. For each feature P in a cluster C, we first calculate its epipo-

lar inconsistency e = f (P) with other features that also belong to

the cluster. Then we select the top two features with lowest residual

errors e serving as agents of current cluster. Our implicit assump-

tion is that not all features in the cluster are irrelevant; many feature

points are correctly grouped after initial clustering in the first phase,

as we illustrated in Fig. 3. Thus the feature with less residual error

e is more reliable to reflect the geometric property of this cluster.

In this phase, the mean vectors of cluster centers are not required.

Each cluster is collaboratively represented by the two canonical

features. This is done to tightly constrain the epipolar consistency

using two epipolar lines. If a cluster has less than three features,

then these features are directly used as agents. For later usage, we

also calculate the total epipolar inconsistency of each cluster, i.e.,

E = ∑P∈C f (P). Moreover, there is one thing deserving the notice.

Some feature pairs in a cluster may share none fundamental matri-

ces (F = 0). In such case, we manually set a large constant for the

inconsistency residual u (u = 5) between these pairs.

Next, in the assignment step, we have to associate each feature

P with the “nearest” cluster. Here the nearest is measured by the

epipolar consistency. In order to minimize Eq. 3, we expect the fea-

ture to be grouped into a cluster which causes the lowest increas-

ing of epipolar inconsistency. So for each feature P, we compute

its epipolar inconsistency e = f (P) with the two feature agents of

each cluster (not the entire features in the cluster). If P achieves

the minimal residual error ek against cluster Ck and P /∈ Ck, then

we associate this feature to this cluster; otherwise, proceed for an-

other feature. Like the process in the last phase, we confine the

comparison scope of each feature, which is determined by the NC

neighborhood of its cluster. This is the key to speed up our iterative

procedure because limiting the size of comparison region signifi-

cantly reduces the number of calculations.

Once each feature has been associated to a proper cluster, an up-

date step is required to readjust the agents of each cluster. We again

calculate the epipolar inconsistency e of each feature in the cluster,

and choose the top two as agents. Accordingly, the total epipolar

inconsistency E′ of this cluster is also updated. Then the ℓ1 norm

is utilized to compute a difference ε = ∑Ci
|E′

i −Ei|, for each clus-

ter Ci, between current cluster state and previous cluster state. The

assignment and update steps repeat iteratively until the difference

converges: ε is below a given threshold. However, in experiments,

we have found that NI = 8 iterations suffice for most datasets due to

the initialization process in the first phase, and we report all results

in this paper using this setting.

Finally, we need a post-processing step to filter unreliable clus-

ters. Because the cluster with less than three features is insufficient

to decide correspondences, hence we neglect the matching results

in such clusters. We also strictly constrain that the mean epipo-

lar inconsistency of each cluster (corresponding to each residual u)

should be below a given threshold ND = 5; otherwise, this cluster is

discarded. Additionally, we have to deal with the case that multiple

features within a cluster may originate from the same image. We

prune such redundant features according to their ascending order

of residual errors e and only remain the minimal one. The entire

algorithm of this phase is summarized in Algorithm 1.

Algorithm 1 Geometrically-based feature correspondence adjust-

ment

1: /* Pre-process */

2: for each cluster Ci do

3: for each feature in Ci do

4: compute epipolar inconsistency e = f (P) with other fea-

tures also in the cluster

5: end for

6: select two features with the lowest e

7: compute the total inconsistency E of the cluster

8: end for

9: repeat

10: /* Assignment */

11: for each cluster Ci do

12: for each feature in Ci do

13: compute e = f (P) with the canonical features of other

clusters within a search scope

14: move the feature into the cluster with lowest e

15: end for

16: end for

17: /* Update */

18: the same to the process in /* Pre-process */ (line 2 to 8)

19: until ε ≤ threshold
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Table 1: Performance statistics of three matching methods on three image pairs sampled from different collections.

Image Name
#Features [MA10] [CLW∗14] Our Method

image1 image2 #matched #accepted #matched #accepted #matched

Office Table 3974 3095 90 56 120 84 392

Red Wall 4355 2633 51 44 88 76 389

Notre Dame 5760 22645 162 126 183 152 415

4. Experiments

In this section, we evaluate the performance of our matching al-

gorithm on a variety of datasets. These images range from small-

scale laboratory scenes to large-scale landmark architectures. Fig. 4

shows a series of image pairs samples from these datasets and Ta-

ble 1 and Table 3 list a detail summary. In addition, as our algo-

rithm is constructed for rigid feature-wise correspondence, so the

collections mainly correspond to static objects with seldom non-

rigid deformations.

In order to evaluate the effectiveness of our proposed method, it

is compared to two state-of-the-art matching approaches [MA10]

(kd-tree-based) and [CLW∗14] (hashing-based). All the baseline

algorithms adopt SIFT [Low04] as the experimental feature. In Ta-

ble 1, we report the performance of our algorithm and comparisons

with these methods. The statistics are based on several image pairs,

which are randomly sampled from the datasets. We list the num-

ber of detected features in both images and the matches before

(#matched) and after geometric verification (#accepted). Because

our algorithm has integrated geometric constraints into the match-

ing pipeline, so it has only one term (#matched). For classic kd-

tree-based matching, we adopt the ANN library [MA10] for nearest

neighbor search. As for hashing-based matching, we test the code

provided by [CLW∗14] and leave its parameters unchanged. Addi-

tionally, as we previously analyzed, these methods both require the

ratio-test strategy [Low04] for matching measuring. In our experi-

ments, we set the ratio threshold to be 0.6, which is a general value

for recent matching systems. All comparisons are carried out on

a single personal PC running Ubuntu 14.04 operating system with

Xeon E3 3.3GHz CPU and 16GB memory space. From the table, it

can be seen that our method, as compared to the other algorithms,

is capable of retrieving much more matches from all these scenes.

This is because our method is going to intelligently adjust incon-

sistent features rather than remove them directly. While for higher

distance ratio (e.g., 0.8), [MA10] [CLW∗14] could acquire more

true positive matches, more false positive would also remain.

Fig. 4 shows a visual comparison of these pictures. The images

we exhibit here are in different styles. Dataset “Office Table” shows

an indoor scene with large viewpoint rotations. Dataset “Red Wall”

is an outdoor scene with shift changes. “Notre Dame” is an unstruc-

tured dataset harvested from Internet by [SSS06]. Additionally, we

do not choose the image pairs which are full of visual linkages, as it

is hard to see other details. The first column of this figure expresses

the feature connections (green lines) established by [MA10] and

a geometrically verified version is followed. The third column is

our outputs. Because [CLW∗14] is constructed mainly for acceler-

ation and produces similar results to [MA10], so we only visualize

the matching results of [MA10] for easy illumination. As shown

in the figure, our method achieves significantly denser feature con-

nections as compared to [MA10], while having seldom outliers.

Next, we evaluate the accuracy of our method. However, due to

the absence of ground truth, it is difficult to indicate which corre-

spondences are truly plausible. Noisy still remains, even with the

assistance of human interaction. Fortunately, with a set of calcu-

lated matches, it is feasible to compute the Homography matrix Hi j

relating two given images Ii and I j . Then for each SIFT keypoint

in Ii, its expected position in I j can be roughly determined via this

Homography map Hi jx
i
m. According to the heuristic observation,

we thus subjectively define that if (Pi
m,P

j
n ) is a ground truth match,

it should satisfy the criteria: ||Hi jx
i
m − x

j
n|| < dshi f t . That is, the

coordinate distance between P
j

n and the expected position of Pi
m in

I j should be less than a certain threshold. In our experiment, we set

the distance threshold to 5 pixels. We present a table (Table 2) re-

porting the precision and recall achieved by the tested algorithms.

The records are estimated on the three image pairs of Fig. 4 and

imposed the geometric verification for [MA10] and [CLW∗14]. It

is easy to note that while precision rates are relatively satisfactory,

recall rats are overall low for the two methods due to the preemp-

tive rejection. In contrast, our algorithm maintains higher records

in both precision and recall in the test.

Table 2: Precision and recall statistics of three matching methods.

Method Precision Recall

kd-tree-based method [MA10] 94.0 14.7

hashing-based method [CLW∗14] 89.8 17.6

our geometrically-based method 98.5 53.4

To further evaluate our results, we also compare the accuracy

of each approach by calculating the epipolar inconsistency as pro-

posed in Eq. 3. As we have illustrated, lower residual error of EG

correspond to more consistent feature matching. Fig. 5 shows the

mean residual curves of three matching methods with respect to

different dataset sizes. In the condition of several images, all meth-

ods retain a relatively low residual value. However, with the grow-

ing of available images, their slopes become significantly different.

Our method analyzes correspondence consistency over the whole

dataset, so it has a lower inconsistency residual as compared to the

other methods which are conducted in pairwise manner. This also

highlights two things: 1) the performance of feature matching can

be improved within photo collections; and 2) the measure EG can

be used as an alternative tool to evaluate the matching accuracy.

Due to the noisy in calculations, our algorithm is inevitable to bring

some mismatches. However, the proposed metric tries to ensure the

inconsistency of our method as small as possible .
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Figure 4: The matching result comparisons on three datasets. The first column shows the feature connections (green lines) established

by [MA10]. The second column are the results of [MA10] after geometric verification. The third column shows our outputs.

We next relate our results to image-based modeling. Recent work

in this direction aim to reconstruct denser point clouds. Image

matching is a central element to this field, as each feature poten-

tially corresponds to a spatial point and more matches usually lead

to denser 3D models. Hence, the number of points generated by

image-based modeling algorithms, such as structure from motion

(SfM) [SSS06], to some extent, reflects the performance of feature

correspondence as well. Table 3 shows the statistics of the three

matching methods used in conventional SfM pipeline for match

graph construction. It lists the number of input images and the num-

ber of 3D point clouds finally outputted by SfM. It is visible that,

with regard to different photo collections, our algorithm is always

capable of producing significantly denser results. For more com-

parisons, we will visualize the 3D reconstruction results in Sec. 5.

In terms of speed, Table 3 also shows the running time of the

tested algorithms over image collections. Our algorithm, in con-

trast to [MA10] [CLW∗14], is not constructed for acceleration in

mind. Yet, as shown in the table, it performs reasonably well even

in a single CPU core. It intelligently finds a subset of candidates

for each feature to match and do not require constructing the tree

structure repetitively. The comparisons are examined without any

distributed computation or GPU acceleration. For fairness and sim-

plicity, we have excluded the computational time of SIFT extrac-

tion and pairwise F -matrix estimation for all methods. In the case

of large-scale photo collections, image retrieval technique [NS06]

is recommended to predict overlapping images.

There are only three easy setting parameters (NC, NI and ND)

used in the proposed frameworkd. NC decides the quantity of re-

lated neighbors for each cluster to compare, while NI determining

the number of iterations required in the geometrically-based adjust-

ment phase. In our experiment, we find that NC = 10 and NI = 8

are sufficient for the practical usage. ND controls the threshold of

cluster inconsistency. We set it to 5 for precision consideration. For

some implicit parameters, such as the parameters in RANSAC and

Gaussian kd-tree, we use them in default setting as appeared in pre-

vious work or their codes.
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Figure 5: The mean residual errors of the three test methods ac-

cording to different dataset size.

5. Application

Due to the simplicity of image acquisition and the growing ubiq-

uity of handheld cameras, image-based modeling techniques have

become a popular possibility for 3D reconstruction. Among them,
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Table 3: 3D reconstruction performance of three matching methods.

Datasets #Images
#Point Clouds Time

[MA10] [CLW∗14] Ours [MA10] [CLW∗14] Ours

Arc de Triomphe 217 42 K 39 K 57 K 84 m 21 m 47 m

Museum 27 33 K 34 K 48 K 7 m 2 m 5 m

Notre Dame 18 13 K 12 K 34 K 4 m 1 m 3 m

the structure from motion (SfM) remains the most famous one. It

relies heavily on accurate feature matching to recover the 3D scene

geometry by triangulating the registered images.

In this section we show 3D reconstruction results from photo

collections [CDSHD13, SSS06] based on our iterative matching

method. We begin with SIFT keypoint detection on each given im-

age. Then different feature matching methods are conducted. The

output of our algorithm can be directly used in the following incre-

mental SfM process, as each feature cluster corresponds to a track

which reflects the same 3D point mapping into multiple 2D images.

We use Bundler [SSS06] to compute point clouds.

(a) Two input image collections

(b) Museum: 27 images

(c) Notre Dame: 18 images

Figure 6: 3D reconstruction results on two small-scale datasets:

“Museum” and “Notre Dame”. (a) shows two representative im-

ages of these collections. The left column in (b)(c) are reconstruc-

tion results using [MA10] for match graph construction. The right

column shows the results based on our framework.

Table 3 lists the number of recovered 3D points using the three

approaches and corresponding time. The 3D reconstruction results

are illustrated in Fig. 6. In order to recover desirable 3D structures,

SfM algorithms, based on traditional matching schemes, usually re-

quire large-scale image collections. However, some regions are still

challenging to recover even with adequate input pictures, for exam-

ple, the vegetation in “Museum”. The authors [CDSHD13] suffer

from the absence of point clouds in plants, as shown in the left im-

age of Fig. 6(b). This is due to the analogy of feature points in these

regions and most of them are rejected in matching by ratio-test. In

contrast, our method can reconstruct very detailed 3D models in

the vegetation and symmetric patterns even from very small-scale

image collections, as shown in the right side of Fig. 6.

Figure 7: A failure case of our algorithm. Due to overwhelming

repetitions in the image content, most correspondences are spuri-

ous, although their epipolar inconsistency is low. The left shows the

matching result using [MA10]; the right side is ours.

Limitations Although we have tested the performance of our algo-

rithm on a range of diverse datasets and 3D reconstruction applica-

tion, it also suffers from the following limitations. First, our match-

ing scheme depends on epipolar relations to guide feature cluster-

ing. Thus, our method mainly constructs feature correspondences

for static scenes. For images with non-rigid deformation or when

the epipolar geometry cannot be reliably recovered, it will not per-

form geometrically adjustment to these image pairs. In such case,

our matching method would degenerate to a traditional matching

scheme, where the descriptor clustering phase will play an impor-

tant role in our framework. Second, in order to achieve more reli-

able matching results, a set of related images are desired. Given

only two images, our criteria is insufficient to provide quantita-

tive judgment. In such case, the ratio-test strategy is recommended.

However, with the simplicity of image acquisition, such require-

ment would be generally satisfied. Third, repetitions may contribute

to spurious correspondences. As shown in Fig 7, while our method

can retrieve more geometrically consistent matches from these du-

plicate structures, it is insufficient to distinguish these ambiguities,

as they also satisfy our criteria on epipolar consistency.
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6. Conclusion and Future Work

In this paper, we have presented a novel algorithm for reliable fea-

ture correspondence based on the analysis of epipolar consistency.

We reason that, with a set of images, the epipolar geometry can

provide quantitative correspondence depict. With this metric, we

creatively turn feature matching into an optimization problem and

minimize it in a linear iterative manner. Experiments show that the

proposed algorithm achieves more precise and complete visual cor-

respondences as compared to the other tested approaches. We fur-

ther demonstrate its usefulness in 3D reconstruction. Based on the

constructed match graph, we get significantly denser point clouds

and detailed 3D models.

Although in this work we mainly focus on the problem of cor-

respondence quantification for rigid images, we also consider that

the geometric relationship (in some other forms instead of epipolar

geometry) upon image collections might be advisable for non-rigid

scenes, like [LYP∗14], or the problem of pixel-based correspon-

dence [HSGL11] as well. In the future, we plan to investigate and

extend our model to address these challenges.
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