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Abstract

In this paper, we propose a PatchMatch-based Multi-View Stereo (MVS) algorithm which can efficiently estimate geometry

for the textureless area. Conventional PatchMatch-based MVS algorithms estimate depth and normal hypotheses mainly by

optimizing photometric consistency metrics between patch in the reference image and its projection on other images. The

photometric consistency works well in textured regions but can not discriminate textureless regions, which makes geometry

estimation for textureless regions hard work. To address this issue, we introduce the local consistency. Based on the assumption

that neighboring pixels with similar colors likely belong to the same surface and share approximate depth-normal values, local

consistency guides the depth and normal estimation with geometry from neighboring pixels with similar colors. To fasten the

convergence of pixelwise local consistency across the image, we further introduce a pyramid architecture similar to previous

work which can also provide coarse estimation at upper levels. We validate the effectiveness of our method on the ETH3D

benchmark and Tanks and Temples benchmark. Results show that our method outperforms the state-of-the-art.

CCS Concepts

• Computing methodologies → Computer graphics; Point-based models;

1. Introduction

Given a set of images that are manually calibrated or cali-
brated by Structure-From-Motion algorithms [SSS06, AFS∗09,
SF16, YYL∗16, YYZX17], Multi-View Stereo (MVS) recovers a
dense 3D representation of the target scene. The reconstruction re-
sults are the key ingredients of automatic geometry, scene classifi-
cation, image-based modeling and robot navigation. Thanks to the
publishing of 3D reconstruction benchmark [SvHV∗08, SSG∗17,
KPZK17], the reconstruction results of MVS algorithms can be
quantitatively and effectively evaluated. This facilitates the design
of MVS algorithms and boosts vigorous progress in the field.

Among them, the PatchMatch-based algorithms are currently the
top-performing approaches for robust and accurate 3D reconstruc-
tion. Although [YLL∗18, HMK∗18, YLL∗18, YLL∗19] have ex-
ploited a new direction of MVS algorithms based on deep learning,
these algorithms rely on the training datasets. If no similar scenes
have appeared in the training datasets, the target scenes can not be
entirely and accurately reconstructed by machine learning MVS al-
gorithms.

† This work was partly supported by The National Key Research
and Development Program of China (2017YFB1002600), the NSFC
(No. 61672390), Wuhan Science and Technology Plan Project (No.
2017010201010109), and Key Technological Innovation Projects of Hubei
Province (2018AAA062). Chunxia Xiao is the corresponding author of this
paper.

The core and most challenging procedure of PatchMatch-based
MVS is the estimation of depth maps, which are subsequently fused
into a point cloud and thus make great sense in the quality of re-
construction results. To estimate accurate and dense depth maps,
PatchMatch-based MVS employs PatchMatch to perform pixel-
wise dense matching. PatchMatch was first proposed by Barnes et

al. [BSFG09] to match pixels between two images. As a single-
pixel contains hardly enough information to support robust match-
ing, a window centered at the pixel is applied to collect neighboring
information which is known as the patch in PatchMatch algorithms.
The core idea of PatchMatch is to randomly initialize the match-
ing relationship like translation between patches across two images
and iteratively propagate good matches to surrounding areas. Given
calibrated images, Bleyer et al. [BR11] extended the 2D matching
relationship like translation and scale to 3D via epipolar geometry
and homography projection. Schönberger et al. [SZPF16] furthered
this work and published COLMAP, which could jointly estimate
the depth and normal and perform pixel-wise view selection.

One fundamental building block of PatchMatch is the similar-
ity measurement between patches, which is utilized to judge the
matching across different images. The most commonly used mea-
sures are the Sum of Squared Difference (SSD), Normalized Cross
Correlation (NCC), and bilaterally weighted NCC. As SSD is sen-
sitive to capturing conditions like color balance, it is hardly adopted
by MVS algorithms. NCC and bilaterally weighted NCC measure
the structural similarity between patches and are hence robust to
some capturing variations. However, they can not measure the sim-
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Figure 1: The overview of our algorithm. MVS-LC is our algorithm integrating local consistency to COLMAP. At the top level of the pyramid

architecture, depth maps are first initialized with random values. Then they are optimized using MVS-LC. Depth maps estimated from the

upper level are upsampled and passed to current level as the initial depth maps. To avoid depth hypotheses from upper level stuck by

geometric consistency, we assign patches that are inconsistent in photometry with projections in other visible images with random depth

values as described in Section 4.3.

ilarity when one patch is textureless as NCC will be meaningless
according to the definition. Therefore, the depth of the textureless
regions is hard to be defined with enough confidence since the pho-
tometric measurement alone hardly discerns neighboring regions.
To overcome this problem, Romanoni et al. [RM19] assumed that
textureless areas were often piecewise flat and fit one plane for
each textureless superpixel of the input images thus to iteratively
estimate the depth and normal of pixels inside the superpixel. The
drawback of their method is that the assumption does not suit for
textureless curve surface. Xu et al. [XT19] utilized downsampled
images and median filter to estimate the coarse depth values and
employed geometric consistency to guide the propagation of depth
hypotheses to the higher resolution. However, some details may be
smoothed.

In this paper, we propose a hierarchical MVS algorithm which
can effectively estimate the depth and normal in textureless regions
while keeping the detailed structure. The key insight is that neigh-
boring pixels with similar colors likely belong to the same surface
and share approximate depth-normal values. The main contribu-
tions of our paper are summarized as follows:

• We modified the photometric consistency measurement to make
it suitable for patches with homogeneous texture. COLMAP uti-
lizes bilaterally weighted NCC to measure the photometric con-
sistency between two patches, and when at least one of the
patches to be measured is color homogeneous the photomet-
ric consistency metric is set to −1, which is intuitively unrea-
sonable. According to the number of textureless patches, we
adopt different assignment strategies for photometric consis-
tency metric. Compared to COLMAP, photometric consistency
values computed by our method is more reliable, which is of sig-
nificance for the view selection procedure.

• We introduced the local consistency to guide geometry estima-
tion for textureless regions. By applying local consistency in the
depth and normal optimization procedure, depth and normal val-
ues belonging to neighboring pixels are taken into consideration
and are weighted by their current photometric-geometric con-
sistency and their color similarity with current pixel. Besides,
we replace the constant transition probability of view selection
leveraged in [SZPF16] and [ZDJF14] with a variable based on

the color similarity between neighboring pixels. The new tran-
sition probability will favor coincident view selection for neigh-
boring pixels with similar colors.

We demonstrate our method on the ETH3D benchmark and Tanks
and Temples benchmark and name it as PLC. Results show that our
method outperforms the state-of-the-art methods.

2. Related Work

In the last decade, we have seen vigorous progress in MVS algo-
rithms, and it can be observed that PatchMatch-based MVS algo-
rithms are currently the top-performing approaches according to
benchmarks [SSG∗17,JDV∗14,SvHV∗08,KPZK17]. Since our ap-
proach is also PatchMatch-based, we limit our discussion hence-
forth to PatchMatch-based MVS in this section.

The PatchMatch seminal paper by Barnes et al. [BSFG09] pro-
posed a randomized framework to quickly find dense approximate
nearest neighbor matches between images via random initialization
and propagation of good matches to surrounding areas. Hereafter
Barnes et al. [BSGF10] generalized the original PatchMatch in
matching measurements, searching domains and number of nearest
neighbors. HaCohen et al. [HSGL11] interleaved [BSGF10] with
fitting a global non-linear parametric color model and aggregat-
ing consistent matching regions using locally adaptive constraints
to address dense matching under different lightning and non-rigid
transformations.

Although the works above-mentioned have achieved robust,
dense and pixel-wise correspondence estimation between images,
their results can not be applied directly to the matching procedure
of MVS. Since their works build dense correspondence fields only
in perspective of two dimensions, the mapping relationship is lim-
ited to similarity transformation which leads to the accuracy of es-
timated correspondence hardly reaching the requirement for 3D re-
construction. Notable attempt for applying the idea of PatchMatch
to stereo matching is [BR11] proposed by Bleyer et al., which al-
ternated the fixed-sized square window with slanted support win-
dow onto which the support region was projected. Several vari-
ants of this algorithm have been proposed like PMBP by Besse
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et al. [BRFK14] and PM-Huber by Heise et al. [HKJK13], which
introduced explicit regularization based on [BR11] and achieved
smoother depth estimation while preserving edge discontinuities.
Yan et al. [YYZX17].

Previous works successfully integrate the idea of PatchMatch
into pairwise stereo matching. The first PatchMatch-based Multi-
View Stereo was proposed by Shen [She13]. By applying a sim-
plified method of Bleyer et al. [BR11] to a subset of image pairs
which are chosen according to shared points computed by Structure
from Motion and mutual parallax angle, their method estimates a
set of depth maps. Subsequently, these depth maps are refined ac-
cording to geometric consistency across multiple views and fused
into a point cloud. Galliani et al. [GLS15] modified the propaga-
tion scheme of PatchMatch so that it can be massively parallelized
on GPU. Differently from Shen [She13], for each reference image
Galliani et al. [GLS15] selected a subset of source images accord-
ing to geometric priors for depth estimation. The drawback of these
two works is that their view selection is decoupled from geometry
estimation and is performed for the whole reference image but not
for each pixel.

Zheng et al. [ZDJF14] jointly performed depth estimation
and pixel-wise view selection by formulating them into a Hid-
den Markov Chain. They applied a generalized Expectation-
Maximization method to alternatively update depth estimation and
view selection while keeping the other fixed. Schönberger et al.

[SZPF16] modified [ZDJF14] by jointly estimating depths and nor-
mals which enable hypotheses for slanted surface and utilizing geo-
metric priors to view selection for higher accuracy. Although Zheng
et al. [ZDJF14] and Schönberger et al. [SZPF16] have made a great
contribution to MVS, there are still limitations in their works. NCC
or bilaterally weighted NCC which they utilized to measure pho-
tometric consistency between patches from different images can
not discriminate textureless regions, leading to poor reconstruction
results in textureless regions. To address this issue, Romanoni et

al. [RM19] assumed that textureless regions are piece-wise flat and
fitted a plane for each color-homogeneous superpixel segmented
from the reference image. This method effectively estimates geo-
metric hypotheses for planar-like surfaces but is not suitable for
curved surfaces.

3. Review of the COLMAP Framework

In this section we review the state-of-the-art MVS framework pro-
posed by Schönberger et al. [SZPF16] to introduce notations and
context for our contributions. Since the framework sweeps ev-
ery single line independently in four directions for parallel com-
putational tractability, without loss of generality, we only focus
on one swept sequence and denote the coordinate of the pixel
as value l. Given the reference image Xre f and source images
Xsrc = {Xm|m = 1 . . .M}, the framework models the sequential
depth θl and normal nl as a Markov process where the unobserved
states correspond to binary indicator variables Zm

l ∈ {0,1}, which
indicates whether pixel l is visible in source image m. Then the in-
ference is formulated as a Maximum-A Posterior (MAP) estimation

where the posterior probability is:

P(Z,θ,N|X) =
P(Z,θ,N,X)

P(X)

=
1

P(X)

L

∏
l=1

M

∏
m=1

[P(Zm
l,t |Z

m
l−1,t ,Z

m
l,t−1)

P(θl ,nl |θ
m
l ,n

m
l )P(X

m
l |θl ,nl ,Z

m
l )].

(1)

L is the number of pixels in considered line sweep, X =
{Xre f ,Xsrc}, θ = {θl |l = 1 . . .L} and N = {nl |l = 1 . . .L}. The
likelihood term

P(Xm
l |θl ,nl ,Z

m
l ) =







1
NA exp(−

(1−ρm
l (θl ,nl))

2

2σ2
ρ

) if Zm
l = 1

1
N U if Zm

l = 0
, (2)

represents the occurrence probability of photometric consistency

between patch X
re f
l

centered at pixel l in X re f and the corre-
sponding projection of the patch Xm

l on non-occluded source im-
age Xm. The photometric consistency ρ is computed as bilater-
ally weighted NCC based on color and planar Euclidean distance,

A =
∫ 1
−1 exp(−

(1−ρ)2

2σ2
ρ

)dρ where σρ is a constant, and N is a con-

stant cancelling out the optimization. U is the uniform distribu-
tion in range [−1,1] with probability density 0.5. The geomet-
ric consistency term P(θl ,nl |θ

m
l ,n

m
l ) enforces multi-view consis-

tent depth and normal estimates. The spatial and temporal smooth-
ness term P(Zm

l,t |Z
m
l−1,t ,Z

m
l,t−1) enforces spatially smooth occlusion

maps with reduced temporal oscillation during the optimization.

Zheng et al. [ZDJF14] proposed to use variational inference to
solve the computational infeasible Equation 1 and Schönberger et

al. [SZPF16] modified this work and approximated the posterior
probability with a function q(Z,θ,N) which minimizes the KL-
Divergence with Equation 1. The function q(Z,θ,N) is assumed
to be factorizable into q(Z)q(θ,N). To estimate the approxima-
tion, they proposed a variation of the Generalized Expectation-
Maximization algorithm [NH98]. For tractability, the function
q(θ,N) is constrained to the family of Kronecker delta functions
q(θ,N) = δ(θ = θ∗,N = N∗) where θ∗ and N∗ are the depth and
normal values to be estimated. In the E step, the functions q(θ,n)
are kept fixed and q(Z) is calculated via forward-backward algo-
rithm through the Hidden Markov Model. In the M step, q(Z) is
fixed and (θl ,nl) is optimized as:

(

θ̂
opt
l

, n̂
opt
l

)

= argmin
θ∗

i ,n
∗

i

1

|S| ∑
m∈S

ξm
l

(

θ∗l ,n
∗
l

)

, (3)

ξm
l

(

θ∗l ,n
∗
l

)

= (1−ρm
l (θ

∗
l ,n

∗
l ))+ηmin

(

ψm
l ,ψmax

)

, (4)

where S is the subset of the source images which are selected ac-
cording to the probability P(Zm

l = 1) that favors pixel l is visible
in image Xm and coherent with three geometric priors which en-
courages wide baseline, similar resolutions and front-facing patch.
ξm

l (θ∗l ,n
∗
l ) represents the combination of photometric and geo-

metric discrepancy. η here is set to 0.5 as a constant regularizer.
ψm

l = ‖xl −Hm
l H lxl‖ is the forward-backward reprojection error,

where H l and Hm
l denotes relatively the transformation from the

reference image to the source image and from the source to the
reference image. ψmax = 3px is the maximum reprojection error.
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4. Algorithm

Given camera parameters, 3D reconstruction boils down to a
matching problem under the constraints of epipolar geometry.
PatchMatch-based MVS employs a patch as the proxy of a pixel
for 3D matching. By measuring the photometric consistency be-
tween the patch in the reference image and its corresponding pro-
jection on the other source image, PatchMatch-based MVS jus-
tify which depth and normal values are better hypotheses. Main-
stream PatchMatch-based MVS algorithms adopt NCC or bilater-
ally weighted NCC as the measurement, which can effectively mea-
sure the structural similarity between patches and contribute a lot to
the hypothesis estimation in textured regions. However, those pho-
tometric measurements are unreliable in textureless regions. Par-
ticularly, NCC and bilaterally weighted NCC can not distinguish
patches with homogeneous colors. Besides, NCC and bilaterally
weighted NCC are meaningless according to the definitions when
one of the patches to be measured is color homogeneous.

As the view selection procedure is tightly related to the photo-
metric consistency metrics, we first modify the photometric con-
sistency measurement utilized in COLMAP to make patches with
homogeneous colors visible in the correct source images. Intu-
itively, pixels in textureless regions likely belong to the same sur-
face. Based on this observation, we proposed the local consistency
to favor approximate depth and normal hypotheses for neighbor-
ing pixels with similar colors. The depth and normal optimization
for pixels in textureless regions will be pixel-wisely guided by sur-
rounding geometry according to local consistency with the geome-
try of textured regions as the boundary conditions. This procedure
is demonstrated in Figure 2. To facilitate the convergence of local
consistency, we further introduce the pyramid architecture. In the
remainder of this section, we describe in turn the modification of
photometric consistency measurement, local consistency and the
pyramid architecture.

4.1. Photometric Consistency Measurement Modification

In the COLMAP framework, bilaterally weighted NCC is always
set to −1 once the reference patch is color homogeneous. This will
result in the photometric consistency metrics for textureless patches
to be assigned with the lowest value and can not discriminate with
different depth and normal hypotheses. Although our proposed lo-
cal consistency can contribute to picking up the optimal depth and
normal hypotheses for a textureless patch, the corresponding view
selection probability P(Zm

l = 1) is computed according to pho-
tometric consistency metric. Unconditional minimum photomet-
ric consistency metrics for patches with homogeneous colors are
unreasonable and will disturb the selection of source images S in
Equation 8. The consequence is that incorrect source image, for
example, images where pixel l in reference image is occluded may
be selected for depth and normal estimation of pixel l. To avoid
this situation, we modified the photometric consistency measure-

ment. Denoting h as the number of textureless patches in X
re f
l

and

Xm
l . The photometric consistency is computed as:

ρm
l =



















g if h = 0

−1 if h = 1

−1 if h = 2 and |cm
l − cl |> 3σc

η+0.1 if h = 2 and |cm
l − cl | ≤ 3σc

, (5)

where g is calculated using bilaterally weighted NCC. cl and cm
l are

the color values of patch l and its corresponding projection on im-
age m if they are both color homogeneous. σc is a constant usually
set as 0.05. η is calculated according to Equation 2 which satisfies

1

NA
exp(−

(1−η)

2σ2
ρ

) =
1

2N
, (6)

η = 1−σρ

√

−2ln(
A

2
). (7)

For the case that both patches to be matched are textured, we still
use bilaterally weighted NCC to calculate the photometric consis-
tency. Intuitively, the probability that a textured patch in one image
is captured in the other image as a textureless patch is very low, so
our strategy sets ρ = −1 which is the lower boundary of NCC in
this situation. When both the patch l and its projection on image
m is color homogeneous, ideally the more their colors are similar,
the higher the probability that they are relative is. However, this as-
sumption is unreliable as variable capturing conditions may make
the same surface show different colors in images. So we only make
a rough assumption that when the color difference between refer-
ence patch and projection patch surpasses a certain threshold, the
two patches are unlikely to be related, and vice versa. η is the value
of ρ in Equation 2 that makes P(Xm

l |θl ,nl ,Z
m
l ) is equal in cases that

Zm
l = 0 and Zm

l = 1. In this way, if the colors of X
re f
l

and Xm
l are

similar, the photometric consistency metric η+ 0.1 favors a little

more that X
re f
l

is visible in source image m.

4.2. Local Consistency

To estimate the optimal depth and normal values, COLMAP frame-
work takes both the photometric and geometric consistency into
consideration. According to photometric consistency, depth and
normal values are optimized so that the appearances of the patch
to be matched and its projection on other visible images are simi-
lar, which is intuitive and contributes to precise estimation for re-
gions with textures. Geometric consistency measures the distance
between the patch center and its forward-backward re-projection
with the other visible source image. By optimizing the geomet-
ric consistency, COLMAP ensures depth estimation from different
views is consistent with each other, which will further refine the
hypotheses estimated according to photometric consistency. How-
ever, it is still a hard work to estimate depth and normal values
for textureless regions only considering photometric and geomet-
ric consistency, since estimation according to photometry fails in
textureless regions and hence can not afford effective view selec-
tion and hypotheses information for geometric consistency. To bet-
ter address this issue, we propose the local consistency. Similar
to [RM19], we also think neighboring pixels with similar colors be-
long to the same surface and there exists a geometric relationship
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(a) (b)

(c) (d)

Figure 2: The depth optimization procedure with local consistency.

The black line represents the target scene surface. Two red circles

represent the reliable hypotheses with high photometric and geo-

metric consistency. Each circle sequence represents the depth can-

didates with the solid circle as the current depth and circle with

green outline as the optimal depth coincide with local consistency.

(a), (b) and (c) are sequential states of depth estimation and (d) is

the final stable state.

for pixels inside textureless regions. The difference is that [RM19]
constrains textureless regions to be piecewise flat while we only
assume adjacent pixels with similar colors have approximate depth
and normal values.

In the COLMAP framework, photometric and geometric consis-
tency are mainly considered in the M step of the variational in-
ference, which chooses the most suitable depth and normal values
given fixed view selection probabilities. This procedure is formu-
lated as Equation 3. We further integrate our local consistency in
this procedure and formulate it as:

(

θ̂
opt
l

, n̂
opt
l

)

= argmin
θ∗

i ,n
∗

i

1

|S| ∑
m∈S

ζm
l

(

θ∗l ,n
∗
l

)

, (8)

ζm
l

(

θ∗l ,n
∗
l

)

=λξm
l

(

θ∗l ,n
∗
l

)

+

1−λ

|I| ∑
i∈I

−ξm
i (θi,ni)ϕil(d

θ
il +d

n
il +d

g
il
),

(9)

where λ is a constant regularizer balancing local consistency with
geometric and photometric consistency, I is the subset of adja-
cent pixels around pixel l. dn

il = ‖ni −n∗
l ‖ measures the difference

between normalized normal vectors. dθ
il = min(|θi − θl |/θmax,1)

where θmax is a constant measures the relative depth difference be-
tween pixel i and pixel l. d

g
il

favors the normal vectors calculated

according to photometry and local geometry to be consistent, which
is formulated as:

d
g
il
= ‖n

∗
l (θiK

−1
xi −θlK

−1
xl)‖, (10)

where K is the calibration of the reference image and xi and xl

denote the coordinates of pixel i and l in the reference image.

ϕil = exp(−
(cl−ci)

2

σ2
c

) where σc is the same variable adopted in

Equation 5. ϕil assigns high weights to neighboring pixels whose
color is similar to pixel l. And −ξm

i (θi,ni) assigns high weights to
neighboring pixels whose geometric and photometric consistency
is high.

In addition, we also apply our local consistency assumption
to the estimation of view selection probability P(Zm

l ) where Zm
l

is deemed as the hidden variable in Hidden Markov Chain. In
[SZPF16] and [ZDJF14], the transition probability of Z is formu-
lated as

P
(

Z
m
l |Z

m
l−1

)

=

(

γ 1− γ
1− γ γ

)

, (11)

where γ is a preset constant (usually set to 0.999), which means
that the transition probability of view selection between all adjacent
pixels is the same despite the fact that they may belong to different
objects. Here we define γ as a variable which favors view selection
smoothness between pixels with similar colors and formulate it as

γ = µϕl(l−1), (12)

where µ is a constant experimentally set as 0.999. We introduce µ

here to avoid γ = 1 which will lead to over smoothness of view se-
lection only based on color similarity but regardless of photometric
consistency.

4.3. Pyramid Architecture for MVS

By applying local consistency in the M step of variational infer-
ence, different depth and normal hypotheses of the textureless patch
can be discriminated according to neighboring conditions. How-
ever, for high-resolution images which are very ubiquitously used
now, to estimate the accurate depth and normal hypotheses for tex-
tureless regions which occupy a large number of pixels via only
local consistency in the PatchMatch framework is hard work as it
needs vast iterations to make the local consistency convergence.
Therefore we introduce the pyramid architecture similar to the pre-
vious work [XT19] here to utilize the multi-scale texture informa-
tion and facilitate the procedure. The overview of our pyramid ar-
chitecture for MVS is illustrated in Figure 1.

We first construct a κ-scale pyramid for all input images with
a downsampling factor ι (commonly set as 0.5). For the first level
of the architecture, we first randomly initialize depth and normal
hypotheses for each pixel which is the same with [SZPF16] and
[ZDJF14]. Then we perform depth and normal estimation through
PatchMatch framework with only local and photometric consis-
tency taken into consideration, which is followed by estimation
with photometric, geometric and local consistency. The reason why
we ignore geometric consistency in the beginning is that for ran-
domized depth values the forward-backward re-projection errors
easily beyond the threshold ψmax and hence beyond the geometric
consistency constraint.
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(a) (b)

Figure 3: With increasing resolution, some patches centered at

the same position start to lose texture as their capturing area de-

creases. The first row demonstrates the source images. The colored

rectangles in source images show the corresponding regions for

images outlined in the same color in the second and third rows.

The second and third rows demonstrate the areas (in red rectan-

gles) captured by patches centered at the same position in images

with different resolutions. The images in the second row are with

higher resolution than the images in the third row and are in the up-

per level of the pyramid architecture. For case (a) depth hypothesis

propagated from the upper level is reliable as the primary geometry

in the patch is nearly the same. For case (b), depth hypothesis from

the upper level is unreliable for the current level as the geometry

changes.

Subsequently, the following step is performed repetitively level
by level until the bottom of the pyramid architecture. Hypotheses
estimated by the upper level is passed down to the current level
as the initialization. For increased resolution, normal maps are up-
sampled through joint bilateral upsampler [KCLU07] while depth
values are upsampled by intersecting the back projection ray with
the adjacent patch in 3D space [WYL∗19]. As the proportion of a
patch in the image in the current level is reduced compared with
that in the upper level, some patches start to acquire no texture
as illustrated in Figure 3. Among these patches, some still belong
to the same surface that corresponding patches from upper level
approximate as shown in Figure 3(a). In this situation, the propa-
gated hypotheses are reliable. Some may not belong to the same
surface with neighboring pixels but are deemed as the texture of
neighboring surface in the upper level as shown in Figure 3(b) and
the corresponding propagated depth and normal values are incor-
rect. To distinguish these two cases, we compare the appearance of

the patch X
re f
l

with the appearance of its projections on selected
source images S and count the number of images nc

l on which the
appearance of the projection is in correspondence with that of the
patch from the reference image. For image m ∈ S, we define that

if Xm
l is also color homogeneous and satisfies ‖c

re f
l

− cm
l ‖ < cmax

where c
re f
l

and cm
l are the color values of X

re f
l

and Xm
l and cmax

is the preset threshold, then Xm
l is coincident with X

re f
l

and nc
l is

incremented by one. If finally nc
l ≤ 5 then patch l is thought to be

propagated with wrong hypotheses and we assign θl and nl with
random values to avoid θl and nl are stuck by local and geometric
consistency.

5. Experiments

In this section, we first evaluate and compare our method with
the state-of-the-art MVS methods [SZPF16, KHSM17, YLL∗18,
YLL∗19, XT19, RM19] on the ETH3D benchmark and Tanks and
Temples benchmark. We then perform the ablation study based on
the office dataset provided the ETH3D benchmark. Finally, we an-
alyze the limitations of our method and demonstrate the failure
works. All the experiments in this section are conducted on a sin-
gle machine with an Intel Xeon(R) CPU E5-2630, 64G RAM and
GeForce RTX 2080 Ti.

5.1. ETH3D Benchmark

For evaluation of MVS algorithms, the ETH3D benchmark pro-
vides both high resolution and low-resolution datasets, which are
further classified into training dataset and test dataset. Ground-truth
(GT) is only provided for training dataset, which allows parameter
tuning. Reconstruction results submitted to the ETH3D benchmark
will be evaluated in three aspects as completeness, accuracy and F1

score. The completeness is computed as the percentage of points
from GT which are within a certain distance τ from the model.
The accuracy is computed as the percentage of points from the
model which are within a distance τ from the GT. The F1 score
is the harmonic average of completeness and accuracy. For a de-
tailed description of the ETH3D benchmark, it is suggested to refer
to [SSG∗17].

We set the level of pyramid architecture κ = 5, the constant regu-
larizer λ = 0.97 and σc = 0.05. θmax is assigned with the max depth
value acquired from the sparse reconstruction. All other parameters
are the same as the default of COLMAP. We use the fusion method
provided by COLMAP to fuse depth maps into point clouds.

Table 5 shows the F1 scores of our proposed method against
published state-of-the-art MVS algorithms on test datasets with
thresholds of 5cm and 10cm. It can be observed that PLC ranks
first for several scenarios. For the threshold of 5cm, our method
ranks the second over all test datasets with only 0.09 points off the
first. For the threshold of 10cm, our method ranks the first over
high-resolution test datasets and over all test datasets. It should
be noticed that PLC significantly improve the performance of base
framework COLMAP. The improvement is attributed to the modi-
fication of photometric consistency on textureless regions and local
consistency constraint which can effectively discriminate depth and
normal hypotheses for textureless regions according to geometry
and consistency cost of neighboring pixels.
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Figure 4: Qualitative point cloud comparisons between different algorithms on some high-resolution multi-view test datasets of ETH3D

benchmark.

Figure 5 shows the completeness evaluation on high resolution
training dataset. It can be observed that the overall visual complete-
ness of our results for these scenarios is better than others.

Figure 4 exhibits qualitative point cloud comparisons. Compared
to TAPA-MVS, our method and ACMM perform better for the re-
construction of textureless curve regions as shown in the old com-

puter dataset of Figure 4, where the assumption made by [RM19]
that textureless regions are piece-wise planar fails.

Figure 6 shows the qualitative comparison of the reconstructed
details between ACMM, TAPA-MVS and our method. PLC recon-
structed more details without distorting the structures. The arch of
the window and the edge of the roof in observatory dataset and door
in old computer dataset were distorted by ACMM while delicately
reconstructed by PLC. We infer that the distortion is mainly caused
by median filter adopted by ACMM which is intended to filter out
outlier depth estimates but will also smooth and distort inlier depth
estimates.

5.2. Tanks and Temples Benchmark

The Tanks and Temples benchmark presents both training data
and testing data. The testing datasets are organized into two
groups: intermediate and advanced. The intermediate group con-
tains sculptures, large vehicles, and house-scale buildings with
outside-looking-in camera trajectories. The advanced group con-
tains large indoor scenes imaged from within and large outdoor
scenes with complex geometric layouts and camera trajectories.
Reconstruction results submitted to the Tanks and Temples bench-
mark are evaluated on recall, precision and F-score. The definitions
of recall, precision and F-score are the same as that of complete-
ness, accuracy and F1 score in the ETH3D benchmark as described
in Section 5.1. For a detailed description of the Tanks and Temples
benchmark, it is suggested to refer to [KPZK17].

We set the level of pyramid architecture κ = 4, the constant reg-
ularizer λ = 0.99 and σc = 0.05. θmax is assigned with the max
depth value acquired from the sparse reconstruction. We use the fu-
sion method provided by COLMAP to fuse depth maps into point
clouds and set the maximum re-projection error as 0.5 in this proce-
dure. All other parameters are the same as the default of COLMAP.
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Figure 5: Completeness comparison on the ETH3D benchmark. The models demonstrated are the ground truth provided by ETH3D bench-

mark. We select the threshold for completeness evaluation as 5cm. The green parts of the models are areas where there exist points recon-

structed by MVS algorithms within a distance of 5cm. The red parts of the models are areas where there are no reconstructed points within

5cm.

Dataset Mean Family Francis Horse LightHouse M60 Panther Playground Train
τ(mm) 3 5 3 5 5 5 10 5
COLMAP 42.14 50.41 22.25 25.63 56.43 44.83 45.97 48.53 42.04
MVSNet 43.48 55.99 28.55 25.07 50.79 53.96 50.886 47.9 34.69
R-MVSNet Dense 50.55 73.01 54.46 43.42 43.88 46.8 46.69 50.88 45.25
ACMM 57.27 69.24 51.45 46.97 63.2 55.07 57.64 60.08 54.48

PLC 54.56 70.04 50.3 41.44 58.86 49.19 55.53 56.41 54.13

Table 1: Quantitative F-score comparisons based on the intermediate dataset group of Tanks and Temples benchmark. τ is the default

threshold for evaluation of each dataset provided by the benchmark.

Dataset Mean Auditorium Ballroom Courtroom Museum Palace Temple
τ(mm) 10 10 10 10 30 15
COLMAP 27.24 16.02 25.23 34.7 41.51 18.05 27.94
R-MVSNet 29.55 19.49 31.45 29.99 42.31 22.94 31.1
ACMM 34.02 23.41 32.91 41.17 48.13 23.87 34.60

PLC 34.44 23.02 30.95 42.50 49.61 24.09 34.46

Table 2: Quantitative F-score comparisons based on the advanced dataset group of Tanks and Temples benchmark. τ is the default threshold

for evaluation of each dataset provided by the benchmark.

c© 2019 The Author(s)

Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



J.Liao et al. / Pyramid Multi-View Stereo with Local Consistency

}
�
��
�À
�
�}
�Ç

�
}
��
v
]�
�
o�
P
�
��
�
v

}
o�
��
}
u
�
µ
��
�

~���Kµ��~���d�W� ~�����DD

Figure 6: Detail comparison on ETH3D benchmark. The small images with colored outlines are the enlarged views for areas in the nearest

big images with the same color of edges.

Table 1 and Table 2 demonstrate the F-scores of our proposed
method against published state-of-the-art MVS algorithms on the
intermediate and advanced groups. For the intermediate group, the
mean F-score of models generated by our method ranks the second.
For the advanced group, our method ranks the first on three of the
six datasets and gets the highest mean F-score.

Figure 7 demonstrates the qualitative recall map comparisons on
indoor datasets of the advanced group which contains textureless
regions. It can be observed that the completeness of the models
reconstructed by our method and ACMM outperforms the others,
while our method reconstructs the detailed structures better than
ACMM (e.g., the wall of the Auditorium)

5.3. Ablation Study

We assess the effectiveness of modified photometric consistency,
local consistency and pyramid architecture on the office dataset
from high-resolution training datasets provided by ETH3D bench-
mark. Table 3 represents the F1 score of PLC-MVS without modi-
fying photometric consistency measurement (PC), without pyramid
architecture but using the same number of iterations (PA) and with

decreasing λ coefficient (local consistency is out of service while
λ = 1). Besides, we add an evaluation of COLMAP to Table 3 as
the baseline. Figure 8 demonstrates the corresponding depth maps.

It can be observed that without modifying the photometric con-
sistency measurement (PC), F1 score and completeness of the desk
decreases. The reason is that the view selection procedure is tightly
related to the photometric consistency. Lowest photometric con-
sistency value assigned to textureless regions by original measure-
ment will disturb view selection in untextured regions which will
in return affect the geometry estimation. Without pyramid architec-
ture (PA), our algorithm can still reconstruct parts of the textureless
regions with the guidance of local consistency, but the geometry of
textureless regions do not convergence. When λ = 1, local consis-
tency is out of service and depth hypotheses for textureless desktop
are randomized. Applying local consistency will significantly im-
prove the F1 score as shown in Table 4.

Table 4 demonstrates the accuracy and completeness of results
generated by PLC with decreasing λ. It can be observed that ac-
curacy decreases with decreasing λ as some structures may be
smoothed by over-weighted local consistency.
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Figure 7: Qualitative recall map comparisons between different algorithms on some advanced datasets of Tanks and Temples benchmark.

The pixel color of the recall map represents the distance from the ground truth to the nearest reconstructed point as shown in the legend on

the right. τ is the threshold defined uniquely for each dataset by the benchmark as shown in Table 2.

(a) source image (b) COLMAP (c) PC (d) PA (e) �=1(without local consistency)

(f) �=0.99 (g) �=0.97 (h) �=0.95 (i) �=0.9 (j) �=0.8

2

50

0

(f) �=0.99

L

cm

Figure 8: Ablation Study: without modifying photometric consistency (PC), without pyramid architecture (PA), without local consistency

(λ = 1) and with decreasing local consistency. On the right side is a simplified legend mapping depth values to colors. Depth values between

0 and 2 centimeters are demonstrated with the same color, and it is the same case for depth values above 50 centimeters. Challenging areas

are the white desktop, white box, black screen and black floor on the bottom-left of the image.

τ COLMAP PC PA λ = 1 λ = 0.99 λ = 0.98 λ = 0.97 λ = 0.95 λ = 0.9 λ = 0.8
1cm 37.10 37.90 39.94 43.97 46.19 46.33 46.19 16.11 44.32 43.64
2cm 47.32 46.67 54.15 55.87 59.32 59.19 59.13 58.96 57.26 57.30
5cm 62.27 66.42 75.05 71.13 75.64 75.38 75.51 75.58 74.50 74.83
10cm 73.41 79.05 89.42 81.79 85.94 85.73 85.90 85.98 85.44 85.54

Table 3: Ablation study based on F1 scores for the office dataset: without modifying photometric consistency (PC), without pyramid archi-

tecture (PA), without local consistency (λ = 1) and with decreasing local consistency. τ is the threshold for evaluation.
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Accuracy Completeness

τ
λ

0.99 0.98 0.97 0.95 0.9 0.8 0.99 0.98 0.97 0.95 0.9 0.8

1cm 72.34 71.51 71.31 70.43 68.93 69.30 33.91 34.26 34.15 34.16 32.66 31.86
2cm 80.10 79.20 79.01 78.70 76.76 78.00 47.13 47.25 47.23 47.14 45.66 45.28
5cm 88.10 87.95 87.23 87.00 85.50 86.91 66.27 66.24 66.55 64.81 66.01 65.70
10cm 91.76 91.28 91.13 90.99 89.77 91.04 80.81 80.82 81.23 81.54 81.51 80.66

Table 4: Ablation study based on F1 scores for the office dataset: with decreasing λ accuracy decreases and completeness first increases and

then decreases.

5cm 10cm
COLMAP ACMM TAPA LTVRE PLC COLMAP ACMM TAPA LTVRE PLC

low-resolution 81.80 72.07 76.12 72.22 73.65 81.57 82.20 84.80 82.23 83.54
high-resolution 83.96 89.14 88.16 86.26 89.06 90.40 92.96 92.30 90.99 94.11

indoor 82.04 88.48 87.01 84.90 88.03 89.28 92.50 91.22 89.92 93.43

outdoor 89.74 91.12 91.62 90.34 92.15 93.79 94.35 95.56 94.19 96.13

botanical garden 95.28 94.65 96.64 94.44 97.27 97.95 96.30 98.33 96.18 98.58

boulders 79.75 81.22 80.65 81.50 82.69 87.13 88.71 89.60 89.55 91.15

bridge 94.25 95.31 94.39 92.31 94.29 96.92 97.58 96.79 96.31 96.69
door 92.28 96.12 96.21 94.89 95.44 95.89 97.36 97.65 97.09 97.39
exhibition hall 75.17 85.31 76.38 83.03 79.71 82.83 91.40 81.83 87.88 87.29
lecture room 78.02 85.92 86.19 79.63 84.01 86.88 90.53 91.52 85.67 91.37
living room 93.77 94.34 95.44 92.67 94.18 97.18 96.65 97.23 95.91 96.71
lounge 58.60 70.19 79.75 69.69 76.68 73.77 79.77 87.94 78.79 88.39

observatory 97.84 98.06 98.08 97.79 98.75 99.29 98.75 98.91 98.57 99.52

old computer 65.06 85.65 62.75 71.20 77.28 78.44 91.24 71.31 81.50 87.33
statue 85.92 88.86 95.29 86.26 93.41 93.62 91.64 98.37 89.98 97.13
terrace 91.63 94.08 96.13 91.72 95.02 94.95 95.59 98.17 94.44 97.73
lakeside 74.64 75.71 80.96 77.23 75.81 83.81 84.94 88.22 86.24 85.38
sand box 78.97 79.93 80.06 74.60 78.67 87.08 87.68 88.54 82.83 87.33
storage room1 57.39 54.53 63.78 65.16 61.39 69.46 68.85 75.35 76.93 73.45
storage room2 67.89 70.21 76.37 67.32 71.89 80.01 81.84 84.91 79.30 83.31
tunnel 80.10 79.97 79.45 76.79 80.49 87.49 87.67 86.96 85.84 88.23

All 80.39 84.12 84.62 82.13 84.53 87.81 89.79 90.10 88.41 91.00

Table 5: Quantitative F1 score comparisons on ETH3D benchmark with thresholds of 5cm and 10cm.

5.4. Limitations

For some outdoor scenes, our method falsely estimates the depth
values for sky regions, which are sometimes color-homography
but inherently unreconstructable for MVS datasets. Due to the em-
ployment of geometric constraint for each level of pyramid archi-
tecture, some of the erroneous depth values may simultaneously
satisfy the photometric and geometric consistency across different
views. These incorrect depth hypotheses will not be filtered and
will be fused as 3D points. One example that our method falsely
reconstructs the sky region is shown in Figure 9. For large area of
texture-less regions which may occupy around 1/6 of the reference
images (e.g., the white wall shown in Figure 8), several iterations
are not enough for the convergence of local consistency.

6. Conclusions and Future Work

We proposed a PatchMatch-based Multi-View Stereo algorithm
which can delicately and robustly estimate geometry in textureless

regions. We first modify the photometric consistency measurement
utilized in COLMAP to make the photometric cost of textureless
regions not always maximized and thus assigns its reference value
for view selection. By applying local consistency which constrains
depth and normal estimates in correspondence to that of neighbor-
ing pixels with similar color and low photometric-geometric cost,
the optimization procedure can discriminate and choose the opti-
mal hypotheses. The introduction of pyramid architecture similar to
[XT19] fastens the convergence of local consistency to form stable
and right estimates. Compared to previous works, our method does
not rely on the hard assumption that textureless regions are piece-
wise planar and can handle the geometric estimation pixel-wisely
and softly. Experiments on the ETH3D benchmark and Tanks and
Temples benchmark show that our method can effectively recon-
struct textureless regions even for curve surfaces while keeping the
detailed structure.

In the future, we are going to introduce the semantic segmen-
tation for depth estimation of different objects and utilize vary-
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(a) (b)

(c) (d) 

Figure 9: (a) is the source image. (b) is the corresponding depth

map estimated by our method. (c) and (d) are images of the re-

constructed point cloud. The sky regions which are textureless and

falsely reconstructed are shown in colored boxes.

ing numbers of iteration for different areas. We are going to study
point cloud meshing and combine the texture mapping algorithm
proposed by Fu et al. [FYY∗18] and illumination decomposition
method proposed by Zhang et al. [ZYL∗17] to reconstruct more
realistic 3D models.
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