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Illumination Decomposition for Photograph with

Multiple Light Sources
Ling Zhang, Qingan Yan, Zheng Liu, Hua Zou, and Chunxia Xiao, Member, IEEE

Abstract—Illumination decomposition for a single photograph
is an important and challenging problem in image editing
operation. In this paper, we present a novel coarse-to-fine strategy
to perform the illumination decomposition for photograph with
multiple light sources. We first reconstruct the lighting environ-
ment of the image using the estimated geometry structure of the
scene. With the position of lights, we detect the shadow regions as
well as the highlights in the projected image for each light. Then
using the illumination cues from shadows, we estimate the coarse
illumination decomposed image emitted by each light source.
Finally, we present a light-aware illumination optimization model
which efficiently produces the finer illumination decomposition
results, as well as recovering the texture detail under the shadow.
We validate our approach on a number of examples, and our
method effectively decomposes the input image into multiple
components corresponding to different light source.

Index Terms—Illumination decomposition, multiple light
sources, illumination cues, shadows.

I. INTRODUCTION

DECOMPOSING and editing the illumination of a photo-

graph is a fundamental photo editing task, which is wide-

ly used in image color editing [1], [2], [3], object composition

[4], [5] and image relighting [6]. The illumination we observe

at each pixel is the result of complex interactions between

the lighting and the reflectance of materials in the scene. A

feasible approach for illumination decomposition is first to

estimate the information of the light sources in the scene,

and then separate the shading into components corresponding

to different light sources. With the decomposed illumination,

many applications, such as shadow editing, object recoloring

and scene relighting, can be developed.

However, illumination decomposition for a single image

with multiple light sources is a challenging work. First, we

have to know the light information and the illumination

distribution in the scene. For outdoor scene in the day, the

sun is usually the only light source. While for the indoor

photograph, there are usually several lights in the scene, and

some lights might be out of the view volume of the camera,

which makes the lighting analysis to be a difficult problem.

Second, we need to separate the illumination emitted by each

light source, for both the direct illumination and indirect

(ambient) illumination. As it is an under-constrained problem,
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even given the light source information, finding a linear or

nonlinear combination to meet the decomposition requirement

for each light is quite a difficult task.

Several methods have been proposed for image illumination

decomposition. Carroll et al. [1] decomposed an input image

into multiple basis sources, which correspond to direct lighting

and indirect illumination from each material. This method

focuses on one direct light. It is not practical for illumination

decomposition with multiple light sources. Nayar et al. [6]

exploited high frequency illumination for separating the direct

and global illumination components of a scene measured by

a camera and illuminated by a light source. This method also

handles the scene illuminated by one direct light. Furthermore,

the method requires several input images. Different from

previous methods, in this paper, we present an illumination

decomposition method for a single photograph with multiple

lights sources.

We exploit a coarse-to-fine strategy for separating the input

image into multiple components corresponding to different

light sources (Fig. 12). Specifically, our method consists of the

following main steps. With the help of the geometry structure

of the scene, we first reconstruct the light information in the

scene and the illumination distribution of the image, and detect

the shadow regions in the projected image corresponding to

each light. Then, using the extracted illumination cues from

shadows, we estimate the initial decomposed image emitted

by each light via illumination editing propagation. Finally,

we present a light-aware illumination optimization model to

improve the initial decomposition results, which efficiently

produces the finer illumination decomposition results. We

present our algorithm overview in Fig. 5.

Our method can perform the illumination decomposition

task with only a single image as input, which makes our

method more practical than previous methods. In addition,

in contrast to Carroll et al. [1], our decomposition algorithm

does not depend heavily on the intrinsic image decomposition

results. As intrinsic image decomposition itself is a difficult

underconstrained problem, especially for scene with complex

illumination conditions and materials, our method only uses

the coarse intrinsic decomposition results for light information

estimation. Our method can deal with light sources with

different colors (Fig. 10), and we need not to pre-process white

balance for the input image by eliminating color casts due to

differing lights [7], [8]. We demonstrate the applicability of our

method on a number of examples, including some illumination

editing applications.

In summary, the main contributions of the paper are as

follows:
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• Reconstrcut the light environment and illumination dis-

tribution (including shadow and highlight) of the input

image using the geometry structure of the scene.

• Propose an illumination propagation method to calculate

the initial illumination decomposition for each light using

the extracted illumination cues from shadows.

• Present an illumination decomposition optimization mod-

el to improve the coarse decomposition results, which

effectively recovers the texture details and produces more

visually pleasing results.

II. RELATED WORK

In this section, we review the two groups of the most

related works to our illumination decomposition system: image

decomposition and illumination recovery.

Image decomposition: Image decomposition is a funda-

mental problem in digital image processing, which decom-

poses the image into different components by decomposition

method to extract the required image information. Intrinsic

image decomposition is one of the basic image decomposition.

Since the notion of intrinsic images was first introduced in

[9], many intrinsic image decomposition methods have been

proposed [10], mainly due to its potential wide applications

in computer graphics and vision. The common methods are

to decompose the input image into reflectance image and

shading image. According to the Retinex theory [11], in

general, large intensity gradients correspond to reflectance

changes and shading is smoother. Based on this theory, several

methods [12], [13], [14] applied the pixel gradient and texture

configuration for intrinsic image decomposition. The global

sparsity prior is also a useful cue for image decomposition, and

these methods consider that the natural image is dominated

by a relatively small set of material colors [15], [16], [17],

[18]. As automatic method is difficult for tackling the complex

images, user interaction has been incorporated into intrinsic

image decomposition [19], [20], [21], [22] for producing more

accurate results. Using surface normals, depth or point clouds

also have been incorporated in intrinsic decomposition[23],

[24], [25].

Another common image decomposition is illumination de-

composition. One natural way for image illumination decom-

position is using the intrinsic image decomposition results, that

is, with the decomposed shading or illumination component,

the shading image is further decomposed into components

corresponding to different light sources. Carroll et al. [1]

proposed a user-assisted illumination decomposition method

for a single image for material editing. They first decomposed

the input image into illumination and reflectance compo-

nents employing interactive intrinsic image decomposition

[19]. Then they further decomposed illumination component

with multiple basis sources, corresponding to direct lighting

and indirect illumination from each material. Similar to [1],

our approach also requires some user interactions, but our

approach addresses the illumination decomposition for image

with multiple direct light sources, furthermore, as the intrinsic

image decomposition itself is also a difficult problem, our

method only uses the coarse intrinsic image decomposition

results for light estimation..

There are also some methods for image decomposition

without using intrinsic images. Seitz et al. [26] proposed

an inverse light transport method for illumination decompo-

sition, and Bai et al. [27] separated an image into a sum

of components for each light bounce. Using high frequency

illumination patterns, Nayar et al. [6] separated the direct and

global components of a scene lit by a single light source

with a wide variety of global illumination effects. O’Toole

et al. [28] decomposed light transport into direct and indirect

lighting, and they separated the direct and indirect components

for uniform lighting. Recently, Dong et al. [2] decomposed

the illumination for recoloring diffuse surfaces with consis-

tent interreflections. Note that, these methods usually used a

large number of images captured using active lighting under

controlled conditions.

Illumination recovery: Illumination recovery is also known

as inverse lighting, which is to recover the illumination dis-

tribution for a scene from the appearance of objects located

in the scene. To perform illumination recovery, the light

sources of the image needs to be identified. Hara et al. [29]

presented two methods for recovering the light source position

from a single image, and the light source position helps to

improve the illumination recovery accuracy. Zhang et al. [30]

extracted multiple illumination information from the shading

of a sphere. Mercier et al. [31] proposed a framework to

automatically recover an object shape, reflectance properties,

and light sources from a set of images. Hara et al. [32] used

EM algorithm to simultaneously estimate both the number

of point light sources and the reflectance property of an

object. Relying on a combination of weak cues extracted from

different portions of the image, Lalonde et al. [33] estimated

the illumination for a single outdoor image. By using a single

image to estimate the light number and positions is a difficult

problem. Inspired by [34], [35], we explore shadow as well

user assistance to resolve this problem.

Several methods have been proposed for illumination re-

covery from a single image with cast shadows, and these

methods are based on the idea that images with cast shadows

can be sparsely represented. Sato et al. [36] recovered the

illumination distribution of a scene with shadows cast by an

object of known shape. They introduced an adaptive sampling

framework for illumination distribution estimation. Okabe et

al. [37] employed a Haar wavelet basis to recover lighting in

images with cast shadows. Ramamoorthi et al. [38] analyzed

that the cast shadows can be represented using convolutions

and Fourier basis functions. Based on the observation that the

image set produced by a Lambertian scene with cast shadows

can be represented by a sparse set of images generated by

directional light sources, Mei et al. [39] exploited sparse

representation for recovering the illumination of a scene from

a single image with cast shadows, given the geometry of

the scene. Sparse representation for images with cast shadow

is efficient due to dimensionality reduction. These methods

handle the scene illuminated by one direct light. Furthermore,

the method [39] requires several images. In contrast, our

input is a single photograph with multiple direct lights, and

the output is multiple decomposed images corresponding to

different direct light sources.
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Fig. 1. The pipeline of the proposed illumination decomposition system.

III. OVERVIEW

Different from previous works in image illumination decom-

position that deal with image with one direct light in the scene,

we process image with multiple direct lights and decompose

the input image into multiple components corresponding to

different lights. Let I denote the input image. N is the

number of light sources in the input image. Ik represents the

illumination decomposition image for the kth light source, and

we try to extract Ik respectively from the input image I .

Our illumination decomposition approach consists of two

main stages: light source estimation and illumination decom-

position. Fig. 1 gives a brief overview of the proposed system.

Light source estimation stage provides light environment of the

image for the following illumination decomposition. Illumina-

tion decomposition stage focuses on illumination calculation

for each light by using the information deduced from the

image. We demonstrate our method using an example in Fig.

5.

Light source estimation. We first separate specular highlight-

s (if exist) from the input image and estimate the depth map

for the image, which are used as the assistance information

for our algorithm. Then we determine the number and initial

position of the lights in input image with some user interaction,

and refine the estimated initial light positions by optimizing

an energy function.

Illumination decomposition. This section is the core content

of the proposed method. We infer shadow regions for each

light and analyze the lighting condition in the image. Then,

we extract the illumination cues from shadows and apply prop-

agation strategy to estimate initial illumination decomposition

results. Finally, we utilize a light-aware model to optimize

the initial decomposition results to produce more realistic

illumination decomposition results.

IV. LIGHT SOURCE ESTIMATION

Lighting is a significant element on image appearance. By

reconstructing the lighting condition of a scene, we thus can

get more accurate illumination decomposition results. In order

to effectively estimate the number of the light sources and

their corresponding physical positions, we first detect specular

highlights (if exist) within the input image and estimate its

associate depth map. As shadows are posed by the occlusion

of light transmission, we thus utilize the orientation of shad-

ows to predict the initial position of light sources. With the

information of depth map, specular highlights and shadows,

we build an energy function to estimate the final position of

light sources.

Specular component separation: The specular highlights

reveal useful cues for light position estimation. As shown in

Fig. 2, the input image has two lights, which accordingly cause

highlights appearing on the vase. We use chromaticity-based

specular removal technique [40], [41] to separate the specular

component from I and estimate the chromaticity of different

lights. Similar to [41] we assume that multiple point lights

exist in the scene and all light sources have the same color

(white light).

(a) (b) (c)

Fig. 2. Specular component separation. (a) is the input image. (b) is the
separated specular image. (c) is the image with specular removed.

For I , we use the algorithm of [40] to separate its specular

component. The separated specular component A0 (Fig. 2(b))

will be used in the light position estimation process and the

estimated light color can be edited in illumination editing. We

use the information around the specular region to repair the

specular region. The repaired image with specular removed is

denoted as I0.

Image depth estimation: The illumination information in

an image with multiple lights is complex, which makes the

shadow detection and shading analysis difficult for the illu-

mination decomposition task. The depth map (the geometric

structure) of the scene facilitates the analysis of illumination
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distribution and shadow labeling.

We use the deep convolutional neural field (DCNF) model

[42] to extract the depth map from the input image, which

formulates the depth estimation as a deep CRF learning

problem. Fig. 3 presents two image depth estimation results

using DCNF technique. Based on the computed depth map,

we estimate the geometry structure of the scene and get the

3D global coordinate of each point in the image.

Initial light information estimation: Given a photograph,

the lights in the scene are often outside of the view frustum.

To accurately infer the number of the light sources is a difficult

problem, especially for scenes with large number of light

sources. In this paper, instead of automatically determining

the number of the light sources, we apply the geometric con-

straints technique [34], [35] , [43] between shadows, shadow-

casting objects and the light sources to identify the number

of lights in the scene. Meanwhile, we can estimate an initial

position for each light.

In an image, the shading and shadows should be physically

consistent for a light source, as shown in Fig. 4(a). According

to [34], [35] for a shadow region, we select a point in shadow

and set a wedge region that encompasses the corresponding

object casting the shadow (Fig. 4(b)). If some shadows are

cast by the same light source, there will be an overlap between

the wedges for these shadows, and the projection of the light

source may be located in this overlap region. Hence, we can

determine the number and the initial position of light sources

depending on the overlaps between all wedge regions in the

projected image. As shown in Fig. 4(c), by applying the

wedge-shaped constraints in the image, we conclude that there

are three light sources in the image, and the light sources are

located in the region between the black lines. In our method,

we consider the vertex of the black region (the blue point) as

the initial position of light source.

(a) (b)

Fig. 3. Image depth estimation. (a) is the input images. (b) is the predicted
depth images.

Light source estimation: With the estimated depth map and

the separated specular component, we proceed to optimize the

initial light position. As shading, shadow and specularity in-

Fig. 4. Physical consistency between shading, shadows and lighting. (a) The
blue curve c1 is the cast shadow contour in the planar surface and the red
curve c2 is the corresponding curve on the shadow-casting object with respect
to the light. Specifying a point P1 in c1, according to the imaging principle,
there is a point (P2) in c2, and the ray connecting point P1 and P2 intersects
the light source. (b) P3 is a point in curve c1, and curve c3 on the cylinder
model is the region that may cast shadow point P3. P4 and P5 are the ends
of curve c3. l1 and l2 are rays connected point P3 and the ends of curve
c3. Point P3, ray l1 and l2 combine into a wedge region corresponding to
point P3. (c) The number and the initial position estimation for the lights in
an image using the physically consistency. The yellow points and red wedge
regions are labeled by user interactions.

formation in a scene can provide important cues for estimating

multiple illuminant directions [43]. Inspired by [4], [35], we

present the following energy function to optimize the initial

position of each light:

argmin{
∑

p∈P

{α1(A
0 −A)

2
+ α2(B

0 −B)
2
+ α3(C

0 − C)
2
}

+ α4

N
∑

k=1

(L
′

k − Lk)
2
},

(1)

where A0 is the separated specular image, and B0 is the

shading image which can obtain by performing intrinsic image

decomposition [20] on I0. C0 is the region size of the most

prominent shadow in the input image, which is detected using

the close-form matting method [44], [45], as shown in Fig.

5(h). L
′

k is the initial position of the kth light. Lk is the

optimized light position of the kth light. N is the number of

lights in the image. α1, α2, α3 and α4 are balance parameters.

Note that, in our paper we ignore the size of light sources.

We minimize the energy function (Eq. (1)) by using an

iterative method to obtain the optimal light positions, which

progressively approximate the true light positions in each iter-

ation. Our optimization begins with the initial light positions

and the estimated depth map. At each iteration, according to

the Phong model, we redraw the scene and produce a new

re-rendered image. Consequently, we obtain a new specular

image A, a new shading image B and a new prominent

shadow size C. Using these information, we solve Eq. (1)

using Gradient Descent Method to get new light positions.

This is an iteration of our optimization process. With the

estimated new light positions, we continue the next iteration.

We stop the iterative process when the following conditions

are satisfied: the maximum number of iterations is reached,

or the energy difference between two iterations is less than a

threshold value. Table I is the estimated light position for each

light in Fig. 3(a). Fig. 6 is the energy curve of the optimized

process corresponding to Table I, which shows how the energy

decreases over iterations.
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TABLE I
THE POSITION OF THE LIGHTS IN FIG. 4.

Light source
The estimated position
x y z

Light 1 -0.5766 1.2031 0.3515

Light 2 -1.3422 0.2164 -0.4589

Light 3 -0.0672 0.6686 -0.3886

V. ILLUMINATION DECOMPOSITION

With the obtained illumination information and the geom-

etry structure of the scene, we accomplish our illumination

decomposition task for each light using the illumination cues

from shadow regions.

A. Preprocessing

Before the illumination decomposition, we have to analyze

the relationship between lights and shadows. Meanwhile, for

the highlight image, the inappropriate highlights in the image

may influence the accuracy of the decomposition results. Then,

we also have to deal with the highlights corresponding to each

light (if the image has specular highlights).

Shadow region inferring: With complex lighting envi-

ronment, some shadows corresponding to one light may be

not obviously observed in the input image. To overcome this

issue we infer shadow regions for each light by exploring the

estimated geometric structure of the scene and the direction

of the light. As shown in Fig. 5, the colored regions in (b), (c)

and (d) are the shadows corresponding to three different light

sources, respectively. We use a trimap to display the shadow

regions for each light, which white region represents shadow

and black region represent nonshadow. Correspondingly, we

obtain a shadow mask map with smooth boundaries for each

light, as shown in Fig. 5(e, f, g). Note that, the shadow regions

here contain both cast shadows and attached shadows, where

attached shadow is an important component to generating

realistic images. With the inferred shadow regions, we can

identify the lighting condition in each region.

Moreover, we apply the closed-form matting method [44] to

interactively detect the prominent shadows in the input image.

Fig. 5(h) is the mask map of detected shadows in Fig. 5(a).

With this information, we then can identify the prominent

shadow boundaries in the input image, as shown in Fig. 5(i).

Specular highlight preprocessing: For the highlight image,

with the geometry structure of the scene and the position

of this light, we can identify the relationship between the

highlights and lights. In order to get a decomposed result with

correct highlight information we have to remove the highlights

that are not generated by the current light. As shown in Fig.

7, there are two lights on the vase (the red box in (a)), and the

highlights are from the two different lights. With the highlights

removing, (b) is the image preserving highlights from 1st light

while (c) is the image preserving highlights from 2nd light.

The image only with highlights from kth light is denoted as

Ikh .

Fig. 6. The energy curve for the optimized process corresponding to Table I.

(a) (b) (c)

Fig. 7. Specular highlights preprocessing. (a) is the input image with two
highlights. (b) is the image only with highlights from 1st light. (c) is the
image only with highlights from 2ed light.

B. Illumination cues from shadows

With the observation that there is no illumination contribu-

tion from the light source on the shadow regions where this

light source is blocked, we can extract illumination cues from

shadow regions. With these illumination cues, we can estimate

the initial decomposition illumination in some special regions

for each light source. We assume that there is a fixed ambient

illumination for the input image, and the ambient illumination

is also appeared in the decomposition images.

Sk is the shadow regions cast by the kth light source in

image. If Sk ∩ St 6= ∅ and t 6= k, we consider there are

overlaps between Sk and St. We employ a user-assisted way

to extract the illumination cues for each light, and draw strokes

to specify sample region Fk in each Sk. Note that, the shadow

samples from different Sk may not have the same lighting

environment. These shadow samples from different Sk do

not need to share similar material. For each Fk, we specify

a sample region Gk in nonshadow region that Gk and Fk

share similar material. Different shadow sample regions with

similar material can share the same nonshadow sample region.

As shown in Fig. 8, the shadow samples in (a), (c) and (d)

share similar material, and there is only one corresponding

nonshadow sample in each image. In Fig. 8(b), the two shadow

samples have different materials, so each shadow sample has

a corresponding nonshadow sample.

With these samples, we calculate the illumination cues for

each light in shadow samples. Take a scene with three light

sources as an example (N = 3), the specified three shadow

samples share different materials. Accordingly, we specified

three nonshadow samples corresponding to the shadow sam-

ples. Let µF1 , µF2 , µF3 be the average intensity of the three

shadow samples F1, F2, F3; µG1 , µG2 , µG3 be the average

intensity of the corresponding nonshadow samples G1, G2,

G3, We assume Fk and Gk have the similar average reflectance
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 5. Illumination decomposition system overview. (a) is the input image. (b), (c) and (d) are the inferred shadow regions for each light in the projected
image (the blue region, the green region and the red region). (e), (f) and (g) are the estimated shadow mask map based on the inferred shadow regions for
each light. (h) is the detected prominent shadow mask for the input image. (i) is the prominent shadow boundary of the input image. (j), (k) and (l) are the
coarse decomposed results without shadows. (m), (n) and (o) are the coarse decomposed results with shadows. (p), (q) and (r) are the final decomposed results
for each light.

(a) (b) (c) (d)

Fig. 8. Shadow samples and corresponding nonshadow samples. The strokes with same color in shadow regions are samples from the same Sk , which have
the same lighting environment. Different color regions have different lighting environment.

RFk
. Let the illumination intensities for three direct lights

are L1, L2, L3, respectively, and the intensity of ambient

illumination is La. We assume that in sample Fk only the

kth light is occluded. Then, we have:







































(L2 + L3 + La)RF1
= µF1

(L1 + L3 + La)RF2
= µF2

(L1 + L2 + La)RF3 = µF3

(L1 + L2 + L3 + La)RF1
= µG1

(L1 + L2 + L3 + La)RF2
= µG2

(L1 + L2 + L3 + La)RF3 = µG3

. (2)

With Eq. (2), we get the relationship between RF1 , RF2

and RF3 , that is: RF2 =
µG2

RF1

µG1
and RF3

=
µG3

RF1

µG1
. Then,

we compute the mean intensity for each light in sample F1

(containing the ambient lighting):



























(L1 + La)RF1
=

µF2
µG1

µG2

+
µF3

µG1

µG3

− µG1

(L2 + La)RF1 = µF1 +
µF3

µG1

µG3

− µG1

(L3 + La)RF1
= µF1

+
µF2µG1

µG2

− µG1

. (3)

Meanwhile, we calculate the ratio between the direct illu-

mination and the ambient illumination via Eq. (2): tk = Lk

La
,

for each light. Similarly, the mean intensity for each light in

sample F2 and F3 can be obtained. Note that, for scene with

N lights, the mean intensity for each light in each sample can

be calculated in the similar way, and the general formula for

computing the mean intensity for the kth light in sample F1
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is that:

(Lk + La)RF1
=

N
∑

t=1,t 6=k

(
µFt

µG1

µGt

)− µG1
. (4)

This general formula is validated for scenes with four lights

and five lights.

Let k be the current light source. Ii is the intensity value at

pixel i in the input image (if the input image has highlights,

we use the image only with highlights from kth light, that is,

we use Ikh instead of I). Ek
i denotes the estimated intensity

value at pixel i ∈ Ft in the decomposition image Ik, then

based on Eq. (3), we get:

Ek
i =

(Lk + La)RFt
× Ii

µFt

, i ∈ Ft, t ∈ {1, 2, · · · , N}, t 6= k.

(5)

Using above method, we can obtain the decomposed inten-

sity values in each Ft for each decomposition image Ik.

C. Initial illumination decomposition

After obtaining the decomposition results for each light in

the specified shadow regions, we use these decomposition

results as the illumination cues for the initial illumination

estimation. The basic idea is that, with the illumination cues,

we propagate the intensities in known region to unknown

regions.

For pixel i and its adjacent pixel j in the input image I ,

with the same illumination condition, we have

{

Ii = (Ld + La)Ri

Ij = (Ld + La)Rj
, (6)

where Ri and Rj are the reflectance at pixel i and pixel j.

Ld and La are the direct and ambient illumination at the two

pixels. Then, we get:

Ri

Rj

=
Ii
Ij

. (7)

Similarly, for the pixel i and its adjacent pixel j in the

decomposition image Ik, if the illumination condition is the

same at the two pixels, we have

Ri

Rj

=
Iki
Ikj

, (8)

where Iki and Ikj are the intensity at pixel i and pixel j in the

decomposition image Ik. With Eq. (7) and Eq. (8), we get the

relationship between the input image and the decomposition

image at pixel i and pixel j:

Ii
Ij

=
Iki
Ikj

. (9)

So using the known intensity Ikj , we estimate the value of

Iki : Iki =
Ii×Ik

j

Ij
. With this result, we propagate the illumination

from known regions to unknown regions.

Eq. (9) is valid only if pixel i and pixel j have the same

illumination condition in the input image. While on the shadow

boundaries, the lighting condition between adjacent pixels may

be different. In this situation, Eq. (9) will not be valid. Instead,

we use weighted mean of adjacent pixels to calculate the pixel

on shadow boundaries. We denote shadow boundaries as P ,

as shown in Fig. 5(i).

Similar to the editing propagation [46], we propagate the

intensity from Ft ⊂ St to other region. We denote the known

region as Zk = {Ft, t ∈ {1, · · · , N}, t 6= k} and the rest

unknown regions as U . We estimate the intensity value in

region U through propagating outwards from the boundary

of Zk. We denote region U by layers, starting from the

boundaries of Zk. The width of each layer is one pixel. Let

total number of layers be Nk. For facilitating the illumination

propagation, we introduce an array of tags flag[∗]. index(i)
is the index number of pixel i. If i ∈ Zk, flag[index(i)] = 1;

else, flag[index(i)] = 0.

Let n be the current layer, we initialize n to be 1. Ln

represents the region located in the current layer. We repeat

the following operations until n > Nk:

If i ∈ Ln and flag[index(i)] = 0,

Ek
i =























∑

j∈N(i)

wijE
k
j

∑

j∈N(i)

wij
i ∈ P, flag[index(j)] = 1

∑

j∈N(i)

wij(
Ii
Ij

×Ek
j )

∑

j∈N(i)

wij
i /∈ P, flag[index(j)] = 1

,

(10)

where N(i) is a local neighborhood of pixel i, wij mea-

sures the similarity between pixel i and pixel j, and wij =

exp(−
(Ii−Ij)

2

2σ2 ). If flag[index(i)] = 0 and the value of this

pixel has been computed, we let flag[index(i)] = 1, and n
adds 1. By estimating the unknown pixel using the adjacent

pixels with estimated intensity value, we can estimate the

decomposed intensity values in U for the kth light.

Using above propagation strategy, we calculate the coarse

decomposed image Ek for the kth light, and the illumination

in the shadow regions is also recovered, as shown in Fig. 5(j,

k, l).

Shadow fusion: Shadow is an important component for

images. We denote the estimated shadow mask for the kth

light as sk, which is a trimap, as shown in Fig. 5(e, f, g). We

composite the cast shadows and the attached shadows onto the

decomposed result Ek applying the composting equation [47],

and our composting function is:

Ck
i = αiD

k
i + (1− αi)E

k
i , (11)

where Ck
i is the intensity at pixel i of the decomposition

image Ik containing shadows, which is a linear combination

of the foreground intensity Dk
i and the background intensity

Ek
i , weighted by the fusion operator αk

i . Dk
i describes the

shadow intensity value at pixel i for the kth light in shadow

regions. As there is no light striking the scene surface of

shadow regions, we consider Dk
i = 0. Ek

i is the estimated

decomposed result which we have obtained before. We set

αi =

{

0 ski = 0
ski −Ak

i

255 ski 6= 0
, where ski is the intensity value of

pixel i in shadow map sk, and Ak
i is the intensity value
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produced by the ambient illumination at pixel i with the

lighting condition of light k.

As the illumination in shadow regions on the decomposed

image Ek is recovered for each light, we have (Lk+La)Ri =
Ek

i . Based on equations in Eq. (2), we know that Lk = tkLa.

Then, the ambient intensity with the lighting condition of light

k at pixel i is: Ak
i = LaRi =

Ek
i

tk+1 . In Fig. 5, (m, n, o) are

the decomposition results with both cast shadows and attached

shadows.

D. Illumination decomposition optimization

We have got the initial decomposed results for each light.

But the results may be coarse, especially for scene with com-

plex illumination and materials. Because of the propagation

errors, there may be some artifacts in the coarse results, as

shown in the initial results in Fig. 9(d) (the red box in the

second row). In addition, the shadows may be composed

unnaturally. For example, in Fig. 9, the boundary of the

attached shadow is too hard (the blue box) or the texture of the

object is not clear (the red box in the first row). To improve the

initial results and achieve finer decomposition results for each

light, we formulate the following energy function to optimize

the initial results:

E = Edata + λ1Esmooth + λ2Edet ail. (12)

This energy model contains three terms: data item Edata,

smoothing item Esmooth and detail-preserving item Edetail.

Parameters λ1 and λ2 are the balance weights. We use Iki to

denote the desired decomposed value for the kth light at pixel

i.
Data item: This item is used to obtain a reasonable decom-

position for each light source:

Edata =
∑

k

∑

i

(Iki − Ck
i )

2, (13)

where k ∈ {1, · · · , N}, Ck
i is the intensity at pixel i of the

initial estimated decomposition image for the kth light source.

Smoothing item: Generally, the final decomposed result

tends to be similar for local window with similar appearance.

We use a smoothing item to constrain the local similarity of

similar appearance. To enforce this policy for each decom-

posed image, we define the smoothing term as:

Esmooth =
∑

k

∑

i

∑

j∈N(i)

zij(I
k
i − Ikj )

2, (14)

where N(i) is a local window with center at pixel i. The affin-

ity coefficient zij measures the appearance similarity between

pixel i and pixel j and is defined as zij = exp(−
(Ii−Ij)

2

2σ2 ).
Detail-preserving item: Smoothing process may lead to

texture detail blurring, as illustrated in Fig. 14(b). To preserve

the details of decomposed image, we minimize the difference

of the gradient information between the input image and the

desired decomposition image. The decomposed image contains

only the shadows cast by the current light source, and the

gradient from shadow boundaries created by other light source

in the input image is not desirable to present. Thus, we need

to perform special treatment on the shadow boundaries. To

address this problem, we add a weighting factor in the term

to distinguish the useful gradient and undesirable gradient. The

detail-preserving item is defined as follows:

Edetail =
∑

k

∑

i

wij(∇Iki −∇Ii)
2, (15)

where ∇ is the gradient operator. The weighting factor wij is

designed as:

wij =











exp(−
(ai − aj)

2σ2
), i ∈ Pk

exp(−
(Ii − Ij)

2σ2
), else

, (16)

where Pk represents the shadow boundaries which are not

created by the kth light source, ai and aj are the values of

channel a in the Lab space for the input image at pixel i and

pixel j.

We solve the optimization problem using Gauss-Seidel

method. In the iterative optimization process, we use the

estimated coarse decomposed results Ck
i as the initial value.

As shown in Fig. 5(p, q, r) and Fig. 9(d, g), the decomposition

optimization model significantly improves the initial results.

The artifacts are eliminated and the details are effectively

recovered. The transition on the boundaries of attached shadow

is smoother. The decomposed results, taking both the cast

shadow and the attached shadow into account, appear visually

natural and realistic.

VI. EXPERIMENTS AND DISCUSSIONS

In this section, we present a variety of illumination decom-

position results to validate the performance of the proposed

method. We also apply our method on image illumination

editing. We perform our method on both synthetic images

and natural images, and run our algorithm using C++ on

a PC machine equipped with Pentium (R) Dual-Core CPU

E5200@2.50GHz with 2GB RAM. In our experiments, the

size of N(i) is set to 13× 13 and σ is set to 10. In addition,

we set α1 = 2, α2 = 1, α3 = 1 and α4 = 1.3 in Eq. (1)

A. Decomposed results

In our algorithm, there are three parts requiring manu-

al interventions. First, we need users to select the shadow

keypoint and set a wedge region to determine the number

and the initial position of the lights, as shown in Fig. 4(c).

Second, when we use the close-form matting method [44] to

detect the prominent shadow, we needs users to input some

scribbles for distinguishing shadow and non-shadow regions.

Third, we require users to specify some samples in shadow and

nonshadow regions, respectively, as shown in Fig. 8, which are

used to calculate the illumination cues for each light.

Fig. 10 shows the decomposed results for a synthetic image

with three light sources, which compares the decomposed

result with ground truth image for each light. The synthetic

images in our experiment are rendered using 3D modeling

software Autodesk Maya2013. The three lights in Fig. 8 share

different light color. The first and the second light are white
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(a) (b) (c) (d) (e)

Fig. 9. The coarse decomposed results and the optimized results for each light. (a) is input images. (b) and (d) are initial illumination decomposition for
each light. (c) and (e) are the final optimized results for each light.

TABLE II
COMPARING THE ESTIMATED LIGHT POSITION WITH THE GROUND TRUTH

FOR IMAGES IN FIG. 10 AND FIG. 11.

Image
Light

source

Ground truth The estimated position

x y z x y z

Image 1

Light 1 1.065 -0.005 3.727 1.077 -0.006 3.659

Light 2 1.527 0.010 0.114 1.485 0.009 0.123

Light 3 -0.680 -0.016 0.005 -0.702 -0.015 0.046

Image 2
Light 1 1.650 -0.414 2.170 1.720 -0.432 2.300

Light 2 -0.305 -0.433 2.275 -0.330 -0.478 2.327

Image 3
Light 1 0.750 -0.031 1.272 0.810 -0.036 1.325

Light 2 -0.041 0.039 1.280 -0.052 0.400 1.331

light, and the color of the third light is pink. Using our

illumination decomposition method, we get the decomposed

image for each light, as shown the second row in the Fig. 8.

Both the illumination and color of our results are very close

to the ground truth images (the first row). In Table II, the data

for Image 1 compare the estimated position for each light in

Fig. 10 with ground truth position. The estimated positions

using our method are close to the actual positions.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10. Illumination decomposition results for a synthetic image with three
light sources. (a) is the input image. (b), (c) and (d) are the ground truth
decomposition images for the 1st, 2ed, 3rd light, respectively, and the color
box in each ground truth image is the color of the corresponding light source.
(e), (f) and (g) are our decomposed results for each light.

In Fig. 11, we perform our method on another two syn-

thetic images. There are two light sources in each scene.

For comparison purpose, we also present the ground truth

image for each light source, as shown in Fig. 11(d, e). In

the first image, the wooden chair cast shadows on both the

floor and the wall, which have different materials. The second

scene contains two objects: a sofa and a stool. One shadow

from the stool is projecting on the sofa and the floor, and

this shadow region contains two materials. Our coarse-to-

fine strategy successfully estimates the decomposed image

for each light in the scene, as shown in Fig. 11(b, c). Our

decomposition results are visually similar to the ground truth

images, and the hue and brightness are consistent with the

ground truth. In our decomposed images, the texture details are

effectively recovered, and the composed attached shadows are

also visually natural. Table II compares the estimated position

for images in Fig. 11 with ground truth position. Image 2

denotes image in the first row and Image 3 is image in the

second row. The table shows that the estimated positions using

our method approximates the actual positions well.

In Fig. 12 and Fig. 13, we present experiments for outdoor

scenes with multiple lights at night. As shown in the first

and the second column in Fig. 12, each image contains two

directional lights. The first image has two separate objects, and

includes multiple shadow overlapping regions. The second is

a scene under the streetlight at night. Such kinds of images

appear regularly among the outdoor scene at night. Fig. 11 is

another outdoor image with four direct lights. There are three

identical cylinders in the input image, but these cylinders have

different light conditions. Besides a global light for these three

cylinders, the first cylinder (from near to far) blocks three

local lights and the second cylinder blocks a local light. The

decomposed results in Fig. 12 and in Fig. 13 are both natural.

In these real images, our illumination decomposed strategy

works well and the details on the ground and the objects are

effectively recovered.

We also present experiments for indoor images, as shown

in Fig. 14 and the third and the fourth column in Fig. 12.

The image in the fourth column in Fig. 12 has highlights. We

first preprocess the highlights and remove highlights which

are not generated by the current light, as shown in Fig.

7. Then, we perform the decomposed algorithm, and the

decomposed results contain only highlights from the current
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(a) (b) (c) (d) (e)

Fig. 11. Illumination decomposition results for synthetic images. (a) is input images. (b) and (c) are our image decomposition results for each light source.
(d) and (e) are the ground truth for each light source.

Fig. 12. Illumination decomposed results for nature images with two lights. Images in first row are the input images. Images in the second and the third row
are the corresponding decomposed results for each light.

(a) (b) (c) (d) (e)

Fig. 13. Illumination decomposed results for natural image with four lights. (a) is the input image. (b), (c), (d) and (e) are the decomposed results for each
light.
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(a) (b) (c) (d)

Fig. 14. Illumination decomposed results for natural image with three lights. (a) is the input image. (b), (c) and (d) are the decomposed results for each light.

(a) (b) (c) (d) (e)

Fig. 15. Illumination decomposed results for indoor images with highlights. (a) are input images and each scene has two direct lights. (b) and (c) are the
decomposed results for each light without specular highlight preprocessing. The red boxes are the highlights. (d) and (e) are the decomposed results with
highlights preprocessing.

(a) (b) (c) (d)

Fig. 16. Numerical analysis for parameters in illumination optimization model. (a) are two input images. (b) are the optimized results for one light with
λ1 = 1.0, λ2 = 0.0. (c) are our optimization results with λ0 = 1.0, λ1 = 1.2. (d) are optimized results with consistent weighting factor wij .
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light. The scene of the input image in Fig. 14 has three lights.

Applying our illumination decomposed strategy, we get the

decomposed results for each light, as shown in Fig. 14(b, c, d).

With different light environment, the decomposed images have

different intensity and the shadow regions are corresponding

to different light position.

Fig. 15 shows the decomposed results for another two

indoor images, which are close-range scenes. Due to the

occlusion between objects, the shadows are complex. The two

input images in Fig. 15 have two lights and both contain

clear highlights. Without specular highlights preprocessing, the

highlights preserve in each of the decomposed results (Fig.

15(b, c)), where these results are actually not correct and

the specular information does not match the light direction

corresponding to the shadows. The incorrect highlights (red

box) reduce the visual reality. In our system, with highlights

preprocessing, the decomposed results for each light (Fig.

15(d, e)) are more natural, and the highlights for each cor-

responding light are correctly re-rendered.

In Fig. 16, we present two experiments for the different bal-

ance weights in our illumination decomposition optimization

model (Eq. 12). In Eq.11, λ1 = 0 measures the degree of the

appearance smoothing and λ2 = 0 measures the sharpness of

the texture details. With λ2 = 0, the detail-preserving item

will not work in our system, which results in a smoothing

result with detail blurring. As shown in Fig. 16(b), the surface

textures in two results are both blurred compared with our

results with λ2 = 1.2. In our illumination decomposition

model, we take the texture detail into account and use a

weighting factor wij in Eq. 15 to discriminate the desirable

and undesirable shadow boundaries. This makes our method

produce visually convincing results. When using consistent

wij = exp(−
(Ii−Ij)

2

2σ2 ) in all regions, the weighting factor does

not process the shadow boundaries separately. In this situation,

the detail-preserving item works by keeping the gradient of the

input image to the decomposition image in consistent way, the

shadow boundaries not corresponding to the current light may

cause undesirable artifacts in the final decomposed result, as

shown the color box in Fig. 16(d). To address this problem, our

definition for wij which distinguish the useful and undesirable

gradient produces much better results with details recovered

in the surface (as shown in Fig. 16(c)).

The time consumption of our method depends on the size

of the input image and the size of the local neighborhood used

in our system. Typically, for an image with size of 1074×691

(the first row in Fig. 12) and the local neighborhood with

size of 13×13, it takes about 6 seconds for initial illumination

estimation and takes 12 seconds for solving the optimization

equation (Eq. 12).

B. Illumination editing

Our illumination decomposition method can be extended to

image shadow editing. Like the illumination decomposition,

we specify samples in shadow region and non-shadow region,

as shown in Fig. 17(b). F1 is the shadow sample, and G1 is the

nonshadow sample. Let µ1, µ2 be the average intensity of the

two samples, respectively. The shadow-free intensity at pixel i

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 17. Shadow image editing. (a) is input image. (b) displays samples in
image, red region is shadow sample, green region is non-shadow sample. (c) is
our shadow removal result. (d) is shadow removal result of [Ling et al. 2015].
(e) is shadow removal result of [Xiao et al. 2013]. (f) is shadow removal
result of [Shor and Lischinski 2008]. (g) is new shadow mask. (h) is shadow
editing result. (i) is object composting result.

in F1 can be estimated as: Ei =
µ2×Ii
µ1

, i ∈ F1. Similar to the

section 4.2, after we have estimated the illumination for F1,

we can recover the illumination in other shadow regions by

propagating the illumination from F1 to other shadow regions.

Let S be the shadow regions, and then the recovered intensity

for the shadow regions is represented as:

Ei =

∑

j∈N(i)

wij(
Ii

Ij
× Ej)

∑

j∈N(i)

wij

, (i ∈ S) ∩ (i /∈ F1),

f lag[index(j)] = 1.

(17)

Fig. 17(c) is the shadow-free result using our proposed

illumination processing system, which effectively recover the

illumination and texture details in shadow region. We also

present some shadow removal results produced by three ex-

isting methods [48], [49], [50], as shown Fig. 17(d, e, f).

Compared with these three methods, our shadow removing

result is more consistent with the surrounding environment.

We can also edit the shadow-free image using the compost-

ing equation (Eq. 11). As shown Fig. 17(h), we composite a

new shadow mask (Fig. 17(g)) onto the shadow free image,

which produces a shadow on the wall and ground. Similarly,

given a color image, we can blend the color image into the

wall, producing a wall painting, as shown in Fig. 17(i).

Limitations: Our method processes the image with multiple

lights using the information of shadows. But, if the pixel inten-

sities in shadow regions are closed to zero, our illumination

cues from shadows will fail to work, which will affect the
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subsequent decomposed process. Furthermore, for image with

heavy noises in shadow regions, the decomposed results may

also contain some noises in these regions. Another limitation

is that, the illumination cues are obtained from some user

interactions for specifying samples. In practice, an automatic

illumination decomposition method is desirable.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a coarse-to-fine illumi-

nation decomposition system for image with multiple light

sources. We first reconstruct the light information using the

estimated geometry structure of the scene. Then, we estimate

the initial illumination decomposed result for each light with

the extracted illumination cues from shadows. Finally, we

develop a light-aware optimization model to optimize the

coarse decomposition and produce finer decomposed results

for each light. Although the decomposed results may not

be physically accurate, the results are visually pleasing with

texture details effectively recovered. Finally we also have

extended our method to some applications, such as shadow

removal and shadow editing. We believe our method can

facilitate other image editing operations, such as material

recoloring and illumination-aware object composting.

In our system, we need to use some interactions to obtain

the illumination cues from the specified sample regions. In the

future, based on the sophisticated illumination environment

analysis, we would like to develop an automatic method

to perform the illumination decomposition for image with

multiple lights. In addition, our method can get the information

of image illumination and shadow, which may be helpful for

shading image generation. So extending these ingredients into

intrinsic image decomposition or shape from shading would

be an interesting future work. Finally, it is also an interesting

research direction to extend our method to decompose the

video illumination. For video data, the illumination may be

dynamic, and we need to estimate the depth map for the video

data. For the input video streaming, the depth map for each

frame should be estimated in real time, and the depth maps

should be spatial-temporally coherent. Similar to image case,

this research direction is also a challenging task.
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