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Surface Reconstruction via Fusing
Sparse-Sequence of Depth Images

Long Yang, Qingan Yan, Yanping Fu, and Chunxia Xiao

Abstract—Handheld scanning using commodity depth cameras provides a flexible and low-cost manner to get 3D models. The
existing methods scan a target by densely fusing all the captured depth images, yet most frames are redundant. The jittering frames
inevitably embedded in handheld scanning process will cause feature blurring on the reconstructed model and even trigger the scan
failure (i.e., camera tracking losing). To address these problems, in this paper, we propose a novel sparse-sequence fusion (SSF)
algorithm for handheld scanning using commodity depth cameras. It first extracts related measurements for analyzing camera motion.
Then based on these measurements, we progressively construct a supporting subset for the captured depth image sequence to
decrease the data redundancy and the interference from jittering frames. Since SSF will reveal the intrinsic heavy noise of the original
depth images, our method introduces a refinement process to eliminate the raw noise and recover geometric features for the depth
images selected into the supporting subset. We finally obtain the fused result by integrating the refined depth images into the truncated
signed distance field (TSDF) of the target. Multiple comparison experiments are conducted and the results verify the feasibility and
validity of SSF for handheld scanning with a commodity depth camera.

Index Terms—depth image refinement, handheld scanning, sparse-sequence fusion, surface reconstruction, supporting subset.
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1 INTRODUCTION

COMMODITY depth cameras (e.g., Microsoft Kinect [1])
open up a new way to capture 3D models. Unlike

the conventional optical scanner with special scanning set-
up [2], [3], commodity depth cameras make 3D scanning
flexible and accessible to general users with low-cost [4], [5].
Especially, the handheld scanning manner could capture
the models which are inconvenient to be scanned by a
fixed scanning platform because of their weight, volume or
special position. For example, the big and heavy Stanford
sculpture group in [6], the relief on a large wall (Fig. 12)
and a tree-trunk (Fig. 9) could be reconstructed by handheld
scanning using a commodity depth camera.

Following the fundamental pipeline of 3D reconstruction
from range images, KinectFusion [7] takes frame-to-model
registration to align an input depth image and incrementally
integrates the aligned depth images into the fused target.
Since the registration and fusion computations are loaded
on GPU, KinectFusion makes real-time handheld scanning
with commodity depth cameras feasible and obtains impres-
sive reconstructed results. Users can hold a depth camera
and roam around a target to get its 3D model [8], [9].
Handheld scanning by commodity depth cameras is expect-
ed to provide abundant 3D models for computer graphics
community. Recently, a number of research works acquire
3D objects or scenes using commodity depth cameras based
on Kinectfusion [8], [9], [10], [11], [12], [13], [14].

Although handheld scanning with commodity depth
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cameras has made large progress in terms of its flexibility
and the real-time performance, it still contains some draw-
backs. The bottlenecks mainly exist in two aspects: (1) A
large number of redundant depth images are incorporated
into the data fusion. To scan a moderate size object, it has
to integrate nearly a thousand frames which are mostly
unnecessary. (2) The jittering frames of handheld scanning
might blur the geometric features of a scanned surface and
even trigger the failure of camera tracking. An example is
shown in Fig. 1(a), where the geometric features on the
reconstructed model are smoothed and even the face is
distorted.

KinectFusion scans a target with the high frame-rate
for successive visual tracking. Densely fusing all the cap-
tured frames benefits denoising a single depth surface, but
it involves heavy scene redundancy between consecutive
viewpoints. Since the assumption of low-speed and stable
camera motion [15] cannot be guaranteed for handheld
scanning and the fusion will be reset once the camera
tracking fails, in practice, users have to try many times to
finish scanning an object. So far as we know, there is no
existing work which attempts to cut down the redundant
frames and generate pleasing results for handheld scanning
by using commodity depth cameras.

In this paper, we present a new sparse-sequence fusion
(SSF) algorithm, which is based on the extracted supporting
subset from the captured depth image sequence, for hand-
held 3D scanning with commodity depth cameras. A unified
objective function is devised to screen out the supporting
depth images meanwhile filter both redundant and jittering
frames. In addition, we introduce a refinement operation
for the selected depth images. This refinement benefits the
reconstructed result of SSF. The main contributions of this
paper include:
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(a) dense-sequence fusion (b) sparse-sequence fusion

Fig. 1. Depth sequence fusion of handheld scanning with a commodity depth camera. In (a), the left-top is the input depth image sequence, the
left-bottom is camera trajectory of dense-sequence fusion, the right part is the reconstructed surface of dense-sequence fusion. The counterparts
in (b) are sparse depth sequence, camera trajectory of SSF and the corresponding reconstruction result, respectively.

• Proposing a unified objective function to construct
the supporting subset. We extract several effective
measurements to describe the dynamic state of came-
ra motion. The sparse expression problem of original
depth sequence is solved by the online analysis of
these measurements.

• Eliminating the dependence of dense-sequence fu-
sion by introducing a refinement process for the
selected depth images. It denoises depth images in
the supporting subset meanwhile recovers their geo-
metric features.

The remainder of this paper is organized as follows:
Section 2 describes the related work of 3D reconstruction
from range images. We give the overview of our algorithm
in Section 3. The details of surface reconstruction from
SSF and its implementation are elaborated in Sections 4
and 5, respectively. Section 6 shows the experiments and
discussions. Finally, we conclude our work in Section 7.

2 RELATED WORK

Reconstructing 3D model from multi-view range images has
been widely investigated in the last two decades [16], [2], [3].
Herein we will review the related work about range scan,
fusion and enhancement of the coarse depth images, and
the recent progress in 3D scanning by commodity depth
cameras.

The general 3D optical scanning technique contains three
procedures. It first captures surface segments corresponding
to the consecutive-view depth images, and then registers
these segments to a unified world coordinate system, finally
integrates and fuses these aligned surfaces to reconstruct the
target model.

Registering multiple depth images is the basis of 3D
scanning [3], [17], [18]. Iterative closest point (ICP) algo-
rithm [19] aligns two scanned segments (i.e., estimates the

variation of camera pose) via iteratively updating point-
pairs and minimizing the sum of distances between all the
point-pairs. KinectFusion uses Point-to-plane ICP [20] to im-
prove the efficiency of registration. Moreover, it replaces the
traditional frame-to-frame camera tracking with the frame-
to-model manner, which aligns the current frame with a
projected depth image on the last camera pose from the
fused model. Since each referenced depth image is projected
from a gradually completed unique model, frame-to-model
registration could effectively reduce the drift artifact and
provide a reliable estimation of camera pose for an indoor-
scale scene [7], [21]. Nevertheless, the jittering frames in
depth image sequence of handheld scanning will cause the
failure of camera pose tracking.

Surface integration aims to remove the crack, overlap
and deficiency of the aligned segments and generate a nice
model. The earlier work [22] stitches multiple segments
based on the Venn diagram. The method [23] clips the
segments along their boundaries and merges them to be a
complete mesh surface. KinectFusion employs volumetric
range image processing (VRIP) [16] to fit the overlapped
segments and utilizes the truncated signed distance field
(TSDF) to represent the fused surface. Since the scanned
target is embedded in a bounded volumetric space which
is encoded with the TSDF of the fitted surface, it could
update the implicit representation of target surface readily
and reconstruct complex models robustly. However, it lacks
screening mechanism for original depth images. Fusing the
redundant frames and the jittering depth images will blur
geometric features of the scanned target.

A single range surface acquired by a commodity depth
camera inherently contains heavy noise [24]. Existing 3D
scanning methods using commodity depth cameras elimi-
nate noise via fusing the dense depth-image sequence [7].
There are several ways to enhance the surface segment of a
single depth image. Most up-sampling methods [25], [26]
could refine a coarse and low-resolution depth image
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by interpolating depth-pixels under the guidance of a
high-resolution RGB image. Shading based depth refine-
ment [27], [28], [29] employs the shading decomposition of
an aligned RGB image to enhance the corresponding depth
image. It requires a reliable estimation for both illumination
and albedo. It is infeasible to integrate these techniques
into the real-time procedure of handheld scanning, since
the unstable camera motion might cause blur artifacts on
RGB images and precisely estimating albedos for different
parts of a scene is intractable. A multi-scale method [30],
which recovers geometric features without the assistance of
an additional RGB image, could be adapted to refine the
depth images captured by commodity depth cameras.

Relying on the mobility of commodity depth camera,
together with the simultaneous localization and mapping
(SLAM) technique on dense depth map [31], depth im-
age fusion has been extended to large-scale scenes by
means of translating and rotating the integrated TSDF
cube [15], [9], [10]. Chen et al. [11] employ a hierarchical
GPU data structure which compresses the generated TSDF
volume to reconstruct large-scale scene with real-time high
quality. Nießner et al [12] exploit voxel hashing rather than
regular grid to efficiently access and update the implicit
surface for large-scale scene. The saved time is then used
for increasing ICP iterative times so that it improves the
registration accuracy and generates faithful surfaces.

To scan a large scene reliably, the inevitable drift artifact
of camera tracking should be well controlled. Zhou et al. [6]
distribute the accumulated errors of the camera pose to
the non-interesting parts so that the interesting regions will
be reconstructed faithfully. The elastic fragment fusion [13]
exploits non-rigid fusion between adjacent volumes to gen-
erate global consistent 3D scene. Fioraio et al. [14] reduce
camera drift by updating the associated TSDFs between
two adjacent sub-volumes. Recently, Xu et al. [32] explore
the direction of automatic robot scanning via online scene
analysis based on KinectFusion. Zhang et al. [33] integrate
structural information from online analysis to enhance the
reconstruction of indoor scenes. These methods have not in-
vestigated scanning reconstruction from sparse depth image
sequence. The aforementioned two drawbacks of handheld
scanning in Section 1 still exist. Without decimating the
captured depth images, more redundant frames need to be
saved and fused when a large-scale scene is scanned.

Unlike the existing approaches, our method explores
surface reconstruction via SSF for handheld scanning 3D
objects using a commodity depth camera.

3 OVERVIEW

3.1 Problem Statement
The basic setting of our problem is handheld scanning
using a commodity depth camera. Our goal is to realize 3D
reconstruction of SSF. The core problem is how to decrease
the redundant depth images and simultaneously exclude
the jittering frames from the original sequence. Moreover,
SSF will reveal heavy noise of the raw depth images. We
should generate noise-free results in spite of using less
depth images.

Supporting subset. To achieve SSF, we exploit a support-
ing subset to represent the original depth image sequence.

We do not intend to give a mathematical definition of the
supporting subset. But its essential properties are provided.
It should effectively decouple the supporting depth images,
the jittering frames, as well as the redundant frames. The
supporting subset should cover all views of the scanned
target included in the original sequence. Our supporting
subset will balance between the sufficiency of scanning view
and the sparseness of original sequence.

Single-frame refinement. Dense fusion removes the
heavy noises of the raw depth images relying on abundantly
averaging the target’s TSDF [7]. Sparse fusion integrates on-
ly a few depth images so that the reconstructed model will
be noise-contaminated. We introduce a refinement process
to improve the quality of each selected depth image in the
supporting subset. It will break the dependence of dense-
sequence fusion. With the refined depth images, SSF does
not depend on dense fusion to eliminate noise anymore.

3.2 Algorithm Pipeline
For captured depth image sequence, we first present a
target-oriented weighted ICP (WICP) to improve the accu-
racy of target registration. We then introduce a new module
(procedure (c) in Fig. 2) to construct supporting subset for
the captured depth image sequence. It provides a sparse and
stable depth image subsequence for scanning fusion. After
that, a real-time denoising in combination with a feature
recovering operation is designed to refine the selected depth
images. Finally, the refined depth images are integrated into
the target’s TSDF to obtain the reconstructed model. The
overall pipeline of our algorithm is depicted in Fig. 2.

Fig. 2. The pipeline of our SSF algorithm. (a) is the input depth image
sequence. A distance-weighted WICP algorithm is designed for the
target-oriented frame-to-model registration in (b). We introduce module
(c) to construct the supporting subset and module (d) to refine the
selected depth images. (e) is the reconstructed target via SSF.

4 SURFACE RECONSTRUCTION USING SPARSE-
SEQUENCE FUSION

4.1 Preliminary
Range scan integrates a depth image (i.e., surface segment)
into the target’s TSDF based on its corresponding came-
ra pose. Given a depth image sequence D = {d(i)|i =
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1, · · · , N} with N consecutive views, we attempt to con-
struct a supporting subset S = {s(j)|j = 1, · · · ,M} (S ⊂ D
and M < N ), which could sufficiently represent the initial
sequence D and cut down the redundant depth images as
well as the jittering frames. We denote the camera trajectory
as a set of sensor poses CP, i.e.,

CP = {cp1, cp2, · · · , cpi, · · · , cpN}. (1)

Each pose cp consists of a view orientation v and a camera
location l. For example, the camera’s pose of the i-th frame
cpi can be expressed as

cpi = (vi, li). (2)

The motion between two consecutive poses is represented
by a rigid transformation matrix T, defined as,

T =

[
R3×3 t3×1

01×3 1

]
, (3)

namely,

cpi = T · cpi−1. (4)

The rotation transformation R and the translation t are
calculated by a coarse-to-fine ICP procedure between the
i-th depth image and the projected depth image [7].

4.2 Construction of the supporting subset
Our method reduces redundant data through sparsely sam-
pling the original depth image sequence. Since the regis-
tration of depth image is based on the views’ overlaps [7],
we should hold proper redundancy to make the registration
smooth rather than eliminating all the overlaps. Therefore,
we construct a supporting subset to reconstruct an object
with minority but sufficient depth images.

For handheld scanning, it is inapplicable to simply con-
struct the supporting subset by straightforwardly choosing
a depth image every h frames. This periodic frame fusion
might trigger tracking losing or feature blurring. The exam-
ples are shown in Fig. 3. The idea that constructs the sup-
porting subset by analyzing view coverage of the scanned
target is also unadvisable for real-time handheld scanning.
This strategy needs to recognize the scanned target and in-
vestigate their precise overlaps between consecutive depth
images. It involves sophisticated processing of extracting 3D
model from the raw depth image.

Our method resorts to more tractable quantities to ap-
proximately solve the sparse expressing problem of original
sequence. Since fusing depth images is sequential and ir-
reversible, we select the supporting depth images in order,
namely frame-by-frame. We extract four measurements re-
lated to camera poses for selecting the supporting subset.
Based on these measurements and their interrelationship,
we construct a unified objective function to determine
whether the current i-th frame should be integrated into
the target’s TSDF. The objective function is formulated as

E(i) = λ1Ejit(i) + λ2Edif (i) + λ3Evel(i) + Esel(i), (5)

where Esel(i), Ejit(i), Edif (i) and Evel(i) represent the
selection cost of current frame, instant variation of camera

(a) h=4 (b) h=7

Fig. 3. Surface reconstruction by fixed frames fusion. (a) and (b) are
the results of periodic fusion corresponding to every 4 and 7 frames,
respectively. Note that the results are reconstructed by removing three
times of camera tracking losing.

viewpoint, scene continuity and the camera motion speed,
respectively. The specific definitions of these terms are as
follows:

Selection cost of current frame. Since our goal is uti-
lizing as few frames as possible to reconstruct an object, we
introduce a switch term Esel(i) which controls the selection
of the current i-th frame. Specifically, the term Esel(i) will
be set to 1 if the current frame is chosen into the supporting
subset, otherwise it takes 0. Thereby, the selection cost of
current frame is defined as

Esel(i) =

{
1, if d(i) ∈ S
0, otherwise. (6)

Utilizing this term our algorithm could practically choose
the supporting depth images and decimate the redundant
frames from the captured depth sequence.

Instant viewpoint change. Depth images with sudden
viewpoint change (i.e. camera jittering) will cause feature
blurring on the scanned model, even trigger camera tracking
losing. Those jittering frames should not be fused into
the final model. We consider three aspects to evaluate the
instant variation of viewpoint corresponding to current
depth frame. The first is the discrepancy θi of two camera
orientations between current view vi and its immediate
predecessor vi−1, defined as

θi = arccos(〈vi, vi−1〉 /
(∣∣vi∣∣ · ∣∣vi−1

∣∣)), (7)

where 〈A,B〉 denotes the inner product of two vectors of A
and B.

∣∣A∣∣ refers to the length of vector A. A large θi means
a noticeable viewpoint change with regard to camera pose
of the previous frame. In practice, a camera jittering often
associates with several poses’ drift from local camera trajec-
tory. Thereby, we use another discrepancy θi from current
view line vi to the average view line vi = avgj∈Nf (i)(vj) of
its preceding local neighbors Nf (i), i.e.,

θi = arccos(〈vi, vi〉 /
(∣∣vi∣∣ · ∣∣vi∣∣)). (8)
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We assign 10 preceding frames for Nf (i) in our experiments.
In addition, we measure the third discrepancy θ̃i between
current view vi and the k-th view vk (the k-th depth image
is the latest selected frame in supporting subset S before the
current frame),

θ̃i = arccos(〈vi, vk〉 /
(∣∣vi∣∣ · ∣∣vk∣∣)). (9)

These three indicators are combined together to measure
the instant viewpoint change (namely, the jittering property)
of the current i-th frame,

Ejit(i) =

{
exp(θi+θi+ ˜θi) − 1, if Esel(i) == 1
0, if Esel(i) == 0.

(10)

In Eq. (10), the jittering evaluation will be defined only if
the current frame is selected into the supporting subset (i.e.,
Esel(i) takes 1). Otherwise, objective function Eq. (5) takes
no account of the jittering evaluation. Fig. 3 illustrates the
reconstructed results affected by jittering frames.

Scene continuity. During the down-sampling process
of original sequence, sufficient scene overlap between two
selected supporting frames should be maintained. Our algo-
rithm takes the accumulated variation of camera pose as the
evaluation of scene continuity. The accumulated difference
Edif (i) from the latest selected k-th depth image to current
i-th frame is defined as

Edif (i) =

{ ∑i
j=k+1 (cpj � cpj−1) , if Esel(i) == 0

0, if Esel(i) == 1,
(11)

where the notation � denotes the difference of two consec-
utive camera poses. It regards both the camera’s orientation
and location, namely,

cpj � cpj−1 = s · θj + tj . (12)

Orientation change θj refers to Eq. (7). Location offset tj
is formulated as

tj = ‖lj−1 − lj‖2. (13)

s is the tradeoff between camera’s orientation and its loca-
tion. We set s as 25 (one degree orientation change corre-
sponds to 26.18mm target translation when we set the came-
ra 1.5m away from the scanned object) in our experiments.

The term Edif (i) records a local accumulation of came-
ra pose change if the current frame is abandoned (i.e.,
Esel(i) == 0). Once the current i-th frame is selected
into the supporting subset, this record will be reset and
Edif (i) will be assigned to zero again. In Eq. (11), a small
Edif (i) means higher scene continuity while a large value
corresponds to lower scene continuity.

Camera motion speed. For the handheld scanning man-
ner, camera motion speed might vary from time to time.
When the camera moves with a high speed, the captured
depth sequence will contain less frames. We introduce a
term Evel(i) to evaluate the camera motion velocity

Evel(i) =

{ �ti
m

− T

M
, if �ti

m
− T

M
> 0, Esel(i) == 0

0, otherwise,
(14)

where �ti =
∑i

j=i−m tj is the accumulated distance of
camera motion from the (i − m)-th frame to the i-th frame,
�ti/m denotes the average distance that the camera has
traversed in m frames. This speed term will be calculated
only if current camera speed exceeds an average speed
threshold T/M (T and M are the total distance of camera
motion and the corresponding frame number respectively)
and the current i-th frame is not selected into the supporting
subset S.

In essence, the opposite relation implied in Eq. (5) is
that both scene continuity and camera speed compete with
sequence sparsity. According to the definitions of Eqs. (11)
and (14), Edif (i) and Evel(i) will be accumulated if the
current i-th frame is rejected, otherwise they will be reset
to zero. Moreover, the term Ejit(i) of viewpoint change
accounts for the jittering evaluation of current camera pose.
Therefore, the selection of current frame is intrinsically
associated with local dynamical pose evaluation (i.e., the
scene continuity, the camera motion speed, as well as the
instant viewpoint change).

If the current i-th frame is selected our method will refine
its surface segment. Then the refined surface will be fused
by integrating it to the target’s TSDF. Otherwise the current
i-th frame will be excluded. Our algorithm successively
iterates this process for all the captured depth images.
It will gradually produce a supporting subset meanwhile
progressively reconstruct the target via SSF.

4.3 Refinement of a selected depth image

Fusion of the selected supporting depth images greatly
reduces data redundancy. However, the intrinsic noise will
rise. Due to the coupled noise and geometric features on the
coarse depth surface, as shown in Fig. 4(a), it is a challenge
to effectively denoise a depth surface without abrading
its geometric features [34], [35]. Although the method [30]
could enhance geometric features, it will amplify the raw
noise if it directly works on the initial depth image surface.

(a) raw depth surface (b) filtered surface (c) recovered surface

Fig. 4. Refinement of a depth frame surface. A raw depth surface
segment (a) with heavy noise is filtered by a normal dissimilarity con-
strained filter (b) and refined by a multi-scale feature recovery (c).
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We introduce a module for refining each supporting
depth image. It effectively combines a feature-preserving
denoising and a multi-scale feature-recovering operations.

Given a selected depth image d(s), we first perform a
denoising like two-step filtering [34], which works on both
normal and position of each point. The normal ni of a point
pi is updated by a bilateral normal filter n

′
i = f1(ni) with

the normal dissimilarity constraint [36], [37]. The position
filter, p

′
i = f2(pi), updates each point along its normal.

We take 8 iterations for the normal filtering and 2 times
position filtering for each selected depth image surface. It
could effectively denoise a surface segment while preserves
its geometric features as much as possible. Fig. 4(b) shows
the denoised result of a depth image surface.

The initial noise is removed on the filtered depth sur-
face. Nevertheless, some notable geometric features are also
abraded. We did not aim to recover the smoothed detail
features which have the same scale level with the noise.
Our purpose is to recover those abraded significant geo-
metric features and finally to generate a quality 3D model.
Therefore, we adapt a multi-scale feature enhancement tech-
nique [30] for a denoised depth surface. Unlike the detail
extraction method in [30], we use the normal dissimilarity
constrained bilateral filter to separate each detail layer and
the base surface. Specifically, we perform 3 times of filtering
and obtain three detail layers, namely,

pr+1
i = f2(p

r
i ), r = 0, 1, 2, (15)

lodr+1
i = 〈(pri − pr+1

i ), nr+1
i 〉, (16)

where p0i denotes point pi on the initial surface, p3i is the
corresponding point on base surface, lodr+1

i is the (r+1)-th
level of detail for point pi, nr+1

i is the normal of point pr+1
i

(pi after r times filtering). Starting from the base surface we
recover the geometric features following:

ρri = ρr+1
i + 2.0 · lodr+1

i · nr+1
i , r = 2, 1, 0. (17)

Here, ρ3i is the corresponding point of pi on the base surface
(i.e., ρ3i = p3i ), point ρ0i is the updated point of pi on the
recovered surface.

Single-frame refinement stated above is performed on
the surface segment while the scanning fusion takes depth
images as input. Therefore, to obtain the refined depth
image, we transfer the refinement of a surface segment to
the update of the corresponding depth image. Specifically,
the involved geometric offset of point pi along its normal
during the refinement process will be transferred to the
depth variation of corresponding pixel zi

z′i = |ρ0i − p0i |−→z + zi, (18)

where |A|−→z denotes the projection of vector A along the
depth direction −→z (i.e., camera orientation vs). The updated
depth image d′(s) will participate in the sparse fusion
process.

The normal dissimilarity constraint used in the filters
and the detail extracting process gradually consolidates
sharp features, while the multi-scale enhancement recovers
the abraded notable features. A recovered depth image

surface is given in Fig. 4(c). With the refined supporting
depth images, our SSF could produce faithful reconstructed
model. Fig. 5 shows the results of SSF with and without the
refinement operation respectively.

(a) (b)

Fig. 5. Comparison of the reconstructed results. (a) is the result of
SSF without depth image refinement. (b) is the sparse fused result with
refined depth images. Note that both results are obtained based on
WICP registration which is presented in Section 4.4.

4.4 WICP
Frame-to-model ICP algorithm is sufficient for aligning an
indoor scale target [7], [21]. However, to scan a general ob-
ject, there is still space to improve the registration accuracy.
If a depth image contains a large proportion of background,
the distant noisy depth values might dominate the ICP
registration since that the accuracy degrades as the sensed
depth increase [24] and that the ICP is essentially a least
square process [38]. This will disturb camera pose estima-
tion and further blur geometric features on the scanned
model, see an illustration in Fig. 6.

(a)  predicted view (b) observed view 

(c)  ICP (d)  WICP

�

Fig. 6. 2D schematic diagram of WICP (top-view). (a) is a projected
depth image d

′
(i − 1) from the fused target on the last camera pose

cpi−1. The captured current frame d(i) with heavy noise on background
region is shown in (b). (c) is the ICP registration, which is governed
by the distant background pixels and the target’s geometric feature is
blurred. The result of WICP shown in (d) overcomes this disadvantage.

We devise a weight for each pixel participated in ICP
process to improve the alignment accuracy for the scanned
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target. In general, the target appeared near will have small
depth value in the captured depth image. We take a steep
attenuated function w(zi)/W as the weight of a valid depth
pixel zi. w(zi) shown in Fig. 7 is defined as

w(zi) = 1/(1 + expα·(zi−β)), (19)

where α is the scaling coefficient, β is the separating depth
between target and background, and W = max{w(zj)|j =
1, · · · ,N} is the normalization coefficient, N is the number of
the valid depth pixels. Those pixels whose depth is less than
β will get a large weight while the weights of distant pixels
(depth larger than β) will decrease drastically. Distance
weight improves the registration accuracy of the scanned
target. A comparison result is shown in Fig. 8.

Fig. 7. Distance attenuating function w(zi) for WICP. Three attenuation
curves are generated when α takes 1.0, 3.0, 10.0, respectively and β
equals 3.0m.

(a) ICP (b) WICP

Fig. 8. Comparison of ICP and WICP. (a) and (b) are created by densely
fusing depth sequence using ICP and WICP respectively. Both results
are generated by removing the frames which will cause camera tracking
losing.

5 IMPLEMENTATION

For depth sequence fusion, the rigorous optimal supporting
subset does not exist. Since the sequence fusion is irre-
versible and the subsequent depth images are unavailable in
advance, we cannot globally analyze camera poses to select
the supporting depth images. Consequently, our approach

adopts greedy strategy to solve the selection problem for
current frame. To get a reliable and jittering-free initial
frame, we start our SSF when the camera heads towards the
scanned target and has a stable camera state. Those progres-
sively selected frames will form a continuous and sparse
depth subsequence with stable camera motion. Utilizing
these supporting depth images our method will achieve
reliable SSF.

We screen the current frame depending on Eq. (5). Since
the definitions of three terms (Ejit(i), Edif (i), Evel(i)) are
all related to the selection cost Esel(i), we pre-calculate
objective function Eq. (5) under the assumptions of choosing
and abandoning cases respectively, and then determine the
selection of the current depth image. If the choosing cost is
larger than the abandoning cost our algorithm will discard
the current frame, and vice versa. The specific process is
demonstrated in algorithm 1.

Algorithm 1 Select a supporting depth image.
1. input: camera pose cpi of the current i-th frame
2. calculate the jittering evaluation c1 = exp(θi+θi+ ˜θi) − 1
3. calculate scene continuity indicator c2 =

∑i
j=k+1(cpj �

cpj−1)
4. calculate camera speed c3 = �ti/m− T/M
5. if c3 < 0 then c3 = 0 end if

6. assume selection cost c4 = 1
7. if c4 + c1 > c2 + c3
8. Esel(i) = 0
9. else

10. Esel(i) = 1
11. Edif (i) = 0
12. k = i
13. end if

14. output: Esel(i)

Eq. (5) contains three parameters, which control the con-
tribution of each evaluation to the total objective. We give
the principle to set these parameters. A large λ1 will increase
the jittering proportion which improves the probability of
abandoning the jittering frame, and vice versa. Due to the
competing relationship stated in Section 4.2, large values of
λ2, λ3 are prone to choose the current frame while small
values tend to discard the current frame. We empirically
set λ1, λ3 as fixed values 15 and 10 respectively in our
experiments. In Eq. (14), we take 10 frames (i.e., m=10) to
compute the local camera motion speed.

There are two parameters α and β in Eq. (19) which
govern the WICP registration. Scaling factor α controls
the attenuation amplitude of the distance weight. We set
a unified α with 10 for all experimental cases. Separating
depth β can be directly given by users if the depth differ-
ence between target and background is explicitly known.
Otherwise a two-classes depth clustering for scanned target
and background can be used to get the separating parameter
β. Unless otherwise specified, we assigned 3 meters to β in
our experiments.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

With a structured light depth camera Kinect v1, we test
our algorithm on different types of targets under diverse
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circumstances of handheld scanning. It is implemented on
a laptop with an Intel I7 CPU and an Nvidia GeForce GTX
970M graphics card.

6.1 Test models

A sculptured Seneca model, as illustrated in Fig. 1, is placed
on a table surrounded by a window and two office desks.
It is scanned by a limited range of viewpoints. Fig. 9
demonstrates an outdoor tree-trunk. To capture the branch
of this trunk, we walk around this tree a couple of laps and
spirally move down the camera. Fig. 10 is the reconstruction
of the Winnie. In the first row of Fig. 11, a vase in a storage
room is scanned. Due to the shape symmetry, aligning
different surface segments relying on the scanned target is
notoriously difficult. We resort to the background depth by
setting β as 5 meters to achieve registration of the vase. The
second and the third rows in Fig. 11 are a printer and a
chair respectively. The chair with pluri-genus is complex.
It is composed of many basic shape components so that
the occlusions between different parts will interfere with
the scanning process. The fourth row of Fig. 11 shows the
reconstructed result of a decorative globe which is placed in
a large hall. We scan it with a fast camera motion speed. A
scanned small bucket is shown in the last row of Fig. 11.
Fig. 12 exhibits a large reconstructed relief surface. It is
scanned by moving the depth camera along the background
wall. Since the relief is embedded on the wall, the separating
depth β is nonexistent. We set a large value of 5 meters for β
to weight each depth pixel in the process of WICP. Figs. 13
and 14 correspond to the scans of a toy tyre and a mop-slot,
respectively.

All the depth sequences in our experiments are captured
under handheld scanning manner. For most scanned mod-
els, we give the input depth sequence, camera trajectory
(camera poses of the supporting depth images are displayed
by enhanced color and line width), the result of SSF and the
densely fused result, respectively.

6.2 Qualitative comparison

To show the effectiveness of our method, we conduct mul-
tiple comparative experiments. The jittering frames cause
camera tracking losing when Seneca, tree-trunk and globe
models are scanned. An example of tracking losing for
densely fusing globe sequence is shown in the accompany-
ing video. The process of our SSF which removes the camera
tracking losing is also provided.

Fig. 5 demonstrates the results of SSF by using and with-
out using refinement operation, respectively. Refinement of
the selected supporting depth images plays an important
role in denoising the scanned model and recovering the
geometric features for our SSF.

Comparison results of shape registration using ICP and
WICP on Seneca model are given in Fig. 8. Target-oriented
WICP decreases the interference of the noisy background
pixels and improves the registration accuracy of the scanned
target. However, the fused jittering frames still blur geomet-
ric features on the nose and hair regions in Fig. 8(b).

For each tested model, the results produced by both sp-
arse and dense-sequence fusions are exhibited respectively.

(a) input depth sequence (b) camera trajectory

(c) sparse-sequence fusion (d) dense-sequence fusion

Fig. 9. Reconstruction of a real tree-trunk. (a) is the input depth image
sequence. Both camera poses of the selected depth images and the
discarded frames are shown together in (b). The result of SSF is shown
in (c). (d) is the dense-sequence fused result by excluding the jittering
frames which cause camera tracking losing.

(a) input depth sequence (b) camera trajectory

(c) sparse-sequence fusion (d) dense-sequence fusion

Fig. 10. Scan the toy Winnie. (a) is the depth image sequence. The
camera trajectory is shown in (b). The result of SSF is shown in (c). (d)
is the dense-sequence fused result.
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Fig. 11. Surface reconstruction via depth sequence fusion. From top to bottom, a large vase, a printer, a chair, a decorative globe and a bucket are
demonstrated, respectively. For each row, the input depth image sequence, camera motion trajectory (supporting frames and the discarded frames
are given together, and the supporting frames are displayed by enhanced color and line width), the result of SSF and the traditional dense-sequence
fused surface are shown in order.
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Fig. 12. Reconstruction of a relief. The top part is the result of our SSF. The middle is the dense-sequence fused result. The corresponding camera
trajectory is given at the bottom.

In Fig. 1(a), due to the background noise in each depth im-
age and the interference of jittering frames, dense-sequence
fusion degrades Seneca’s face and gives rise to feature drift
on its nose region. Shape symmetry of the vase model
aggravates the registration ambiguity. Fig. 11-1-4 (the 4-th
figure of the 1-st row in Fig. 11) reveals the drawbacks of
shape drift and deficiency on the densely fused result. Our
method utilizes the background depth to align the scanned
vase in Fig. 11-1-3 and generates a complete surface. It is
always difficult to reconstruct the slim battens by aligning
and integrating the captured depth images. Comparing with
sparse fusion, the densely fused chair model (in Fig. 11-
3-4) and mop-slot model (in Fig. 14(d)) distort their legs.
Fig. 11-4-3 and Fig. 11-4-4 show the comparison results
of a reconstructed globe. Our sparse fusion removes the
jittering frames which will cause camera tracking losing
and overcomes the drift artifact appeared in dense fusion
process. Both tree-trunk model and relief surface created
via sparse fusion maintain detailed geometric features, as
shown in Fig. 9 and Fig. 12. The densely fused results,
including the Winnie in Fig. 10(d), the bucket in Fig. 11-5-4
and the tyre in Fig. 13(d), show some blur and drift artifacts.
Note that the results of dense-sequence fusion for Seneca,
tree-trunk, as well as the globe models are generated by
excluding the jittering frames which trigger camera tracking
losing once, twice, and three times in Figs. 1(a), 9(d) and 11-
4-4, respectively.

Overall, for handheld scanning by commodity depth

cameras, these results verify the feasibility and validity of
our SSF. Comparing with the results of dense fusion, our
SSF could robustly reconstruct surfaces from these depth
sequences with unstable camera motion.

6.3 Quantitative evaluation
To further evaluate our method, we perform a quantitative
comparison between the SSF and the dense-sequence fusion
on six targets, including Seneca, printer, Winnie, bucket, tyre
and mop-slot models. The ground truth surfaces of these six
models are easy to obtain.

We compare the reconstructed results with the corre-
sponding ground truth surfaces. We fix a time-of-flight (ToF)
sensor and place the target object on a turntable. Then the
ground truth model is produced by integrating the surface
segments captured from six calibrated turning angles. The
involved models are normalized into a unit cube. The
Hausdorff distance between a reconstructed surface and the
corresponding ground truth model is taken as the maximum
error measurement. Both root mean square error (RMSE)
and maximum error are reported in table 1. Errors of our re-
sults are less than those errors produced by dense-sequence
fusion. The colored error plots in Fig. 15 intuitively visualize
the error of each point for the reconstructed models.

Geometric features inherently demonstrates the quality
of a reconstructed surface. Four different Seneca models are
presented in Figs. 16(a)-(d). We cut each model with two ver-
tical and three horizontal planes respectively to extract five
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(a) input depth sequence (b) camera trajectory

(c) sparse-sequence fusion (d) dense-sequence fusion

Fig. 13. Reconstruction of a small tyre. (a) is the depth image sequence.
(b) corresponds to the camera trajectory. The result of SSF is shown in
(c). (d) is the dense-sequence fused result.

(a) input depth sequence (b) camera trajectory

(c) sparse-sequence fusion (d) dense-sequence fusion

Fig. 14. Reconstruction of a mop-slot. (a) is the depth image sequence.
The camera trajectory is shown in (b). The result of SSF is shown in (c).
(d) is the dense-sequence fused result.

curves. Figs. 16(e)-(i) show five sets of the sectional curves.
The purple curves produced by our method are closer to
the ground truth curves (blue) in the feature regions. SSF
generates better geometric features because of the exclusion
of jittering frames and the introduced WICP as well as the
refinement operation.

TABLE 1
Error evaluation of sparse and dense-sequence fusions on six models

including Seneca, Winnie, printer, bucket, tyre and mop-slot.

Model Fig.
sparse-sequence

fusion
dense-sequence
fusion (WICP)

RMSE Max RMSE Max
Seneca 1 0.0175 0.1012 0.0260 0.1268
Winnie 10 0.0131 0.0545 0.0279 0.1125
printer 11-2 0.0214 0.0735 0.0230 0.0962
bucket 11-5 0.0227 0.0861 0.0254 0.0994

tyre 13 0.0067 0.0225 0.0246 0.1186
mop-slot 14 0.0136 0.0639 0.0207 0.0867

Since our method dedicates to decimating the redundant
depth frames, we list the statistics including the number of
depth image in original sequence and the counterpart in the
selected supporting subset for all tested models in table 2.
The values of parameter λ2 and the compressing ratio of
sparse-sequence are also given in table 2.

Those sequences with stable and low speed camera mo-
tion often contain high data redundancy. Our SSF realized
surface reconstruction by taking 5.6%, 7.4% and 6.7% frames
of the original sequences for Seneca, tree-trunk, and printer,
respectively. Compressing ratios for these sequences exceed
90%. In contrast, objects with complex topology (e.g., chair
model), targets with shape symmetry (vase) and sequences
captured under high camera motion speed together with jit-
tering interference (globe) have relatively low compressing
ratio, see results in table 2. Even so, for all the experimental
cases, our method reduces massive redundant frames and
achieves at least 80% compressing ratio.

TABLE 2
Parameter λ2 and the statistic data of experiments on the tested

models, including the original frame number (N ), the frame number
used in sparse-fusion (M ), as well as the compressing ratio of the

supporting subset. The compressing ratio is defined as
(N −M)/N · 100%.

Model Fig. λ2
Original
num. (N)

Sparse
num. (M)

Compressing
ratio(%)

Seneca 1 7.0 414 23 94.4
tree-trunk 9 8.0 1988 147 92.6

Winnie 10 13.0 900 93 89.7
vase 11-1 15.0 1041 202 80.6

printer 11-2 8.0 1101 74 93.3
chair 11-3 10.0 726 130 82.1
globe 11-4 7.0 434 70 83.9

bucket 11-5 18.0 625 84 86.6
relief 12 9.0 982 128 87.0
tyre 13 18.0 1070 113 89.4

mop-slot 14 19.0 1225 168 86.3

6.4 Efficiency analysis
SSF introduces two additional modules comparing with the
traditional dense-sequence fusion. Constructing the sup-
porting subset requires computing three measurements and
one comparison operation (see Algorithm 1). This is imple-
mented on CPU and can be processed in real-time. The main
time cost we introduced is the depth image refinement. It
is performed on GPU. The average time cost for refining
a single depth image is 28 ms. It is worth to note that
only the selected supporting depth images, approximately
no more than 5 fps (frames per second) when we set the
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Fig. 15. Error plots for six objects. For each row, the left is the colored
error plot for the result of SSF, the middle corresponds to the error plot
of dense-sequence fusion and the right is the ground truth.

scanning frame rate as 24 fps, will be refined. In addition,
our SSF will reduce many redundant depth images so that
the update of TSDF on GPU for these discarded frames will
be saved. Consequently, our approach is capable to run on
the commodity GPU and obtain real-time performance.

6.5 Discussions

In practice of handheld scanning, camera motion following
a large jittering often gets back to the adjacent pose before
the jittering occurred. Hence we assume that camera poses
will turn back to the scanning trajectory after a large jit-
tering. If camera motion follows this assumption, our SSF

(a) ground truth (b) sparse fusion (c) dense (ICP) (d) dense (WICP)

(e) left curve (f) right curve (g) top curve

(h) middle curve (i) bottom curve

Fig. 16. Reconstruction accuracy comparison. (a), (b), (c) and (d) are
ground truth, sparse fused surface, the results of dense-fusion with ICP
and dense-fusion with WICP, respectively. We cut each model with two
vertical and three horizontal slices and extract five curves. (e) and (f) are
side-views of the left curve and right curve from the vertical slices. (g),
(h) and (i) are top-views of the top, middle and bottom curves from the
horizontal slices.

could process the captured depth sequence and reconstruct
target by employing a small number of depth images.

Registration of consecutive segments is the foundation
of multi-view scanning reconstruction. Although the camera
pose of a jittering frame estimated by WICP is not complete-
ly accurate, it is sufficient to identify the jittering frame from
its local trajectory by the extracted jittering measurement.
Therefore, the supporting subset will exclude the jittering
frames. Registration between a stable frame and the progres-
sively fused model will achieve a high accuracy so that our
SSF could finally generate a quality reconstruction result.

Some objects with special shape (e.g. thin targets) are
challenging to be aligned precisely. Especially when view-
points are parallel with the thin object (see an example
in Fig. 17(b)), the target pixels appeared in the captured
depth image only account for a small proportion so that
the accuracy of target registration will degrade drastically.
Consequently, it is difficult to reconstruct these objects via
automatic depth image registration.

The interesting regions of a target will often be scanned
repeatedly. Therefore, abundant depth images will be cap-
tured in this case. In practice, more frames are expected to
be fused for an interesting region. Since the scene continuity
(in Section 4.2) is defined as the accumulated pose variations
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between adjacent frames rather than the direct difference
from last selected depth image to current frame, our method
will select more supporting frames for a repeatedly scanned
interesting region.

6.6 Limitations
There are mainly three limitations of our method: (1) The
supporting subset is not necessarily an optimal sparse repre-
sentation of the original depth sequence. We did not provide
a rigorous theoretical analysis based on viewpoints coverage
of the scanned target. Nevertheless, the supporting sub-
set satisfies our problem setting and provides an effective
balance between the sparsity of the original sequence and
the continuity of the camera viewpoint. (2) For handheld
scanning, the camera pose should get back to the continuous
trajectory once a large jittering occurs. Our approach still
suffers from the scanning reset for a drastic off-track camera
motion without pose recovery. (3) Handheld scanning of the
thin targets is still challenging at present. Fig. 17 shows a
failure case when a bike is scanned. Although sparse fusion
generates better result than dense fusion, the reconstructed
surface is incomplete and has severe drift artifacts.

(a) (b)

(c)

Fig. 17. Scan a bike. (a) and (b) are the side-view and front-view of our
sparse-sequence fused result, respectively. (c) is the result of dense-
sequence fusion.

7 CONCLUSION

Handheld scanning using commodity depth cameras has
brought us a flexible way to get 3D models. However,
directly fusing all the captured depth images cannot obtain
satisfactory results. In the context of handheld scanning
with commodity depth cameras, our work explores the
direction of surface reconstruction by using a small num-
ber of the captured depth images for the first time. We

presented a sparse-sequence fusion method in this paper.
It constructs a supporting subset for the captured depth
image sequence meanwhile fuses these supporting depth
images sequentially. Each raw depth image selected into
the supporting subset is refined by a combined operation
which contains a feature-preserving surface denoising and
a multi-scale geometric feature recovery. This refinement
operation breaks the dependence of dense-sequence fusion.
Experimental results show that our method could effectively
decrease the redundant depth images and reject the interfer-
ence of the jittering frames for low-cost handheld scanning.

For future work, we would like to investigate how to
construct the supporting subset for original depth sequence
relying on 3D content of the scanned target. Employing 3D
content will enable the screening of the supporting frames
more accurate. Another problem that we intend to explore
is to scan and reconstruct those thin objects to enhance our
SSF method.
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